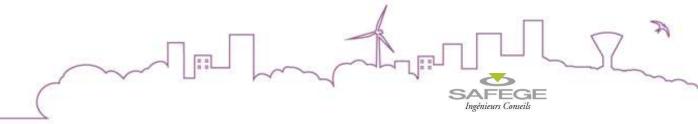


Projet éolien de LUCE

Sous-dossier n°5 « Etude de dangers »

ENERTRAG

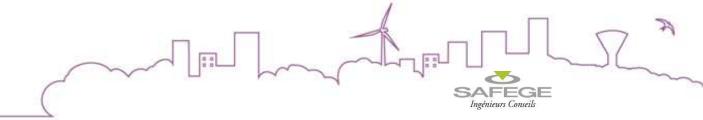
Cap Cergy, Bâtiment B, 4-6 Rue des Chauffours, 95015 Cergy-Pontoise Cedex


SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

SOMMAIRE

1.	Préambule 1
1.1	Contexte législatif et réglementaire1
1.2	Nomenclature des installations classées 1
2.	Informations générales concernant l'installation
2.1	Renseignements administratifs2
2.2	Localisation du site
2.3	Définition de l'aire d'étude2
3.	Description de l'environnement de l'installation 4
3.1	Zones urbanisées4
3.1.1	Etablissements recevant du public
3.1.2	Installations classées pour la protection de l'environnement et installations nucléaires de base
3.1.3	Autres activités
3.2	Environnement naturel 6
3.2.1	Contexte climatique 6
3.2.2	Risques naturels
3.2.3	Environnement matériel 8
4.	Description de l'installation 10
4.1	Caracteristiques de l'installation10
4.1.1	Caractéristiques générales d'un parc éolien
4.1.2	Activité de l'installation
4.1.3	Composition de l'installation

4.2	Fonctionnement de l'installation	14
4.2.1	Principe de fonctionnement d'un aérogénérateur	14
4.2.2	Sécurité de l'installation	16
4.2.3	Exploitation du parc	16
4.2.4	Stockage de produits dangereux et flux	16
4.3	Fonctionnement des réseaux de l'installation	17
4.3.1	Raccordement électrique	17
4.3.2	Autres réseaux	19
5.	Identification des potentiels de	
	dangers20	D
5.1	Potentiels de dangers liés aux produits	20
5.1.1	Les produits entrants	20
5.1.2	Les produits sortants	21
5.2	Potentiels de dangers liés au fonctionnement de l'installation	21
5.3	Réduction des potentiels de dangers à la source	21
5.3.1	Principales actions préventives	21
5.3.2	Utilisation des meilleures techniques disponibles – directive IED	22
6.	Analyse des retours d'expérience .22	2
6.1	Inventaires des accidents et incidents en France	22
6.2	Inventaire des accidents et incidents à l'international	23
6.3	Inventaire des accidents majeurs survenus sur les sites de l'exploitant	24
6.5	Synthèse des phénomènes dangereux redoutés issus du retour d'expérience	25
6.5.1	Analyse de l'évolution des accidents en France	25
6.5.2	Analyse des typologies d'accidents les plus fréquents	25
6.5.3	Enseignements tirés	25



SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

7.	Analyse préliminaire des risques 26
7.1	Recensement des évènements initiateurs exclus de l'analyse des risques26
7.2	Recensement des agressions externes potentielles 26
7.2.1	Agressions externes liées aux activités humaines
7.2.2	Agressions externes liées aux phénomènes naturels
7.3	Scénarios étudiés dans l'analyse préliminaire des risques
7.3.1	Méthodologie
7.3.2	Tableaux de résultats
7.4	Effets dominos
7.5	Mise en place des mesures de sécurité31
7.6	Conclusion de l'analyse préliminaire des risques34
8.	Etude détaillée des risques 34
8.1	Rappel des définitions34
8.1.1	Cinétique 34
8.1.2	Intensité
8.1.3	Gravité
8.1.4	Probabilité
8.2	Caractérisation des scénarios retenus36
8.2.1	Données d'entrée
8.2.2	Effondrement de l'éolienne
8.2.3	Chute d'élément de l'éolienne
8.2.4	Chute de glace
8.2.5	Projection de pales ou de fragments de pales 40
8.2.6	Projection de glace41
8.3	Synthèse de l'étude détaillée des risques42
8.3.1	Tableaux de synthèse des scénarios étudiés 42
8.3.2	Acceptabilité des risques44

8.3.3	Cartographies des risques	44
9.	Description des mesures et des moyens de prévention et de protection	45
9.1	Formation du personnel	45
9.2	Maintenance	45
9.3	Mesure de sécurité	46
9.4	Conformité des liaisons électriques intérieures	46
9.4.1	Fonctionnement des réseaux de l'installation	46
9.4.2	Qualification du personnel	46
9.4.3	Respect des normes techniques	46
10.	Conclusion	47
11	Anneyes	47

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

LISTE DES ILLUSTRATIONS

igure 1 : Localisation générale de l'implantation du projet	2
igure 2 : Zone d'étude du projet	3
figure 3 : Situation du projet par rapport aux zones habitées les plus proches	5
rigure 4 : Situation du projet par rapport aux indices d'effondrements recensés	8
rigure 5 : Situation du projet par rapport à l'environnement humain et matériel	9
igure 6 : Schéma simplifié d'un aérogénérateur	10
igure 7 : Schéma Illustration des emprises au sol d'une éolienne	11
igure 8 : Plan général du parc éolien en phase exploitation	13
igure 9 : Schéma d'une nacelle	15
gure 10 : Principe du raccordement électrique des installations	17
igure 11 : Localisation des postes sources les plus proches	19
igure 12 : Répartition des événements accidentels et de leurs causes	23
igure 13 : Répartition des événements accidentels et de leurs causes	23
igure 14 : Répartition des causes premières d'effondrement	24
igure 15 : Répartition des causes premières de rupture de pale	24
igure 16 : Répartition des causes premières d'incendie	24
igure 17 : Évolution du nombre d'incidents annuels en France et nombre d'éoliennes installées	25

LISTE DES TABLEAUX

Tableau 1 : Synthèse des données relatives à la population locale et au logement4
Tableau 2 : Zones d'habitat les plus proches des emplacements des éoliennes4
Tableau 3 : Synthèse des arrêtés de catastrophes naturelles concernant les communes d'implantation du projet7
Tableau 4 : Synthèse des informations relatives aux indices de mouvements de terrain
Tableau 5 : Coordonnées des éoliennes du parc de LUCE11
Tableau 6 : Coordonnées des points de livraison (PDL)11
Tableau 7 : Fiche technique du projet de LUCE12
Tableau 8 : Caractéristiques du mât14
Tableau 9 : Caractéristiques de la nacelle15
Tableau 10 : Caractéristiques des pales de l'éolienne 15
Tableau 11 : Références cadastrales des postes de livraison 17
Tableau 12 : Détail technique des conducteurs souterrains
Tableau 13 : Références des parcelles traversées par le réseau inter-éolien 19
Tableau 14 : Potentiels de dangers liés aux produits20
Tableau 15 : Potentiels de dangers liés aux installations21
Tableau 16 : Mesures compensatoires25
Tableau 17 : Synthèse des principales agressions externes liées aux phénomènes naturels
Tableau 18 : Entête tableau APR27
Tableau 19 : Analyse préliminaire des risques28
Tableau 20 : Mesures de maîtrise des risques31
Tableau 21 : Scénarios exclus de l'analyse détaillée des risques34
Tableau 22 : Échelle d'intensité des phénomènes dangereux
Tableau 23 : Echelle de gravité35
Tableau 24 : Echelle de probabilité35

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Tableau 25 : Zone d'effet liée à l'effondrement d'une éolienne 30
Tableau 26 : Zone d'effet liée à l'effondrement d'une éolienne 30
Tableau 27 : Détermination de la gravité de l'effondrement d'une éolienne . 3
Tableau 28 : Probabilité de l'effondrement d'une éolienne
Tableau 29 : Zone d'effet liée la chute d'un élément de l'éolienne 38
Tableau 30 : Détermination de l'intensité de la chute d'élément d'une éolienne
Tableau 31 : Détermination de la gravité de chute d'élément de l'éolienne 38
Tableau 32 : Zone d'effet liée à la chute de glace
Tableau 33 : Zone d'effet liée à la chute de glace39
Tableau 34 : Détermination de la gravité d'une chute de glace 39
Tableau 35 : Zone d'effet liée à la projection de pales ou de fragments de pales
Tableau 36 : Zone d'effet liée à la projection de pales ou de fragments de pales
Tableau 37 : Détermination de la gravité de la projection de pales ou de fragments de pales
Tableau 38 : Probabilité de la projection de pale ou de fragments de pales 4:
Tableau 39 : Zone d'effet liée à la projection de glace 4:
Tableau 40 : Zone d'effet liée à la projection de glace 43
Tableau 41 : Détermination de la gravité de la projection de glace 42
Tableau 42 : Synthèse de l'étude détaillée des risques 43
Tableau 43 : Matrice d'acceptabilité du risque 44
Tableau 44 : Synthèse des détecteurs 40

TABLE DES ANNEXES

- Annexe 1 : Accidentologie Extrait du guide technique « Élaboration de l'étude de dangers dans le cadre des parcs éoliens »
- Annexe 2 : Cartographies de zones d'effet des phénomènes dangereux étudiés
 - Carte 1 Effondrement de l'éolienne
- Carte 2 Chute d'élément de l'éolienne
- Carte 3 Chute de glace
- Carte 4 Projection de pales
- Carte 5 Projection de glace
- Annexe 3 : Cartographies de synthèse
- Carte 6 : synthèse des risques / classe de gravité pour l'ensemble des éoliennes et des scénarios
- Carte 7 : synthèse des risques / degré d'exposition (intensité) et nombre de personnes permanentes exposées pour l'ensemble des éoliennes et des scénarios

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

1. PREAMBULE

La présente étude de dangers a pour objet de rendre compte de l'examen pour caractériser, analyser, évaluer, prévenir et réduire les risques du projet d'implantation du parc éolien de LUCE, autant que technologiquement réalisable et économiquement acceptable, que leurs causes soient intrinsèques aux substances ou matières utilisées, liées aux procédés mis en œuvre ou dues à la proximité d'autres risques d'origine interne ou externe à l'installation.

Cette étude est **proportionnée aux risques** présentés par les éoliennes du parc de Luce (80). Le choix de la méthode d'analyse utilisée et la justification des mesures de prévention, de protection et d'intervention sont adaptées à la nature et la complexité des installations et de leurs risques.

Elle précise **l'ensemble des mesures de maîtrise des risques** mises en œuvre sur le parc éolien projeté, qui réduisent le risque à l'intérieur et à l'extérieur des éoliennes à un niveau jugé acceptable par l'exploitant.

Ainsi, cette étude permet une approche rationnelle et objective des risques encourus par les personnes ou l'environnement, en satisfaisant les principaux objectifs suivants :

- Améliorer la réflexion sur la sécurité à l'intérieur de l'entreprise afin de réduire les risques et optimiser la politique de prévention,
- **Favoriser le dialogue technique** avec les autorités d'inspection pour la prise en compte des parades techniques et organisationnelles dans l'arrêté d'autorisation,
- **Informer le public** dans la meilleure transparence possible en lui fournissant des éléments d'appréciation clairs sur les risques.

1.1 CONTEXTE LEGISLATIF ET REGLEMENTAIRE

Les objectifs et le contenu de l'étude de dangers sont définis dans la partie du Code de l'Environnement relative aux installations classées. Selon l'article L.512-1, l'étude de dangers expose les risques que peut présenter l'installation pour les intérêts visés à l'article L.511-1 en cas d'accident, que la cause soit interne ou externe à l'installation.

L'arrêté du 29 septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation fournit un cadre méthodologique pour les évaluations des scénarios d'accidents majeurs. Il impose une évaluation des accidents majeurs sur les personnes uniquement et non sur la totalité des enjeux identifiés dans l'article L.511-1. En cohérence avec cette réglementation et dans le but d'adopter une démarche proportionnée, l'évaluation des accidents majeurs dans l'étude de dangers d'un parc d'aérogénérateurs s'intéressera prioritairement aux dommages sur les personnes. Pour les parcs éoliens, les atteintes à l'environnement, l'impact sur le fonctionnement des radars et les problématiques liées à la circulation aérienne feront l'objet d'une évaluation détaillée au sein de l'étude d'impact.

Ainsi, l'étude de dangers a pour objectif de démontrer la maîtrise du risque par l'exploitant. Elle comporte une analyse des risques qui présente les différents scénarios d'accidents majeurs susceptibles d'intervenir. Ces scénarios sont caractérisés en fonction de leur probabilité d'occurrence, de leur cinétique, de leur intensité et de la gravité des accidents potentiels. Elle justifie que le projet permet d'atteindre, dans des conditions économiquement acceptables, un niveau de risque aussi bas que possible, compte tenu de l'état des connaissances et des pratiques et de la vulnérabilité de l'environnement de l'installation.

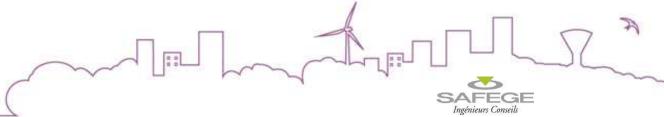
Selon le principe de proportionnalité, le contenu de l'étude de dangers doit être en relation avec l'importance des risques engendrés par l'installation, compte tenu de son environnement et de sa vulnérabilité. Ce contenu est défini par l'article R512-9 du Code de l'Environnement :

- Description de l'environnement et du voisinage,
- Description des installations et de leur fonctionnement,
- Identification et caractérisation des potentiels de dangers,
- Réduction des potentiels de dangers,
- Enseignements tirés et retour d'expérience (des incidents et accidents représentatifs),
- Analyse préliminaire des risques, étude détaillée de réduction des risques,
- Quantification et hiérarchisation des différents scénarios en termes de gravité, de probabilité et de cinétique de développement en tenant compte de l'efficacité des mesures de prévention et de protection,
- Représentation cartographique,
- Résumé non technique.

De même, la circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003 précise le contenu attendu de l'étude de dangers et apporte des éléments d'appréciation des dangers pour les installations classées soumises à autorisation.

À noter que, cette étude de dangers a été réalisée conformément au Guide technique d'élaboration de l'étude de dangers dans le cadre des parcs éoliens établi en partenariat par l'INERIS, le Syndicat des Energies renouvelables et France Energie Eolienne (mai 2012).

1.2 NOMENCLATURE DES INSTALLATIONS CLASSEES


Conformément à l'article R.511-9 du Code de l'Environnement, les parcs éoliens sont soumis à la rubrique 2980 de la nomenclature des installations classées.

Installation terrestre de production d'électricité à partir de l'énergie mécanique du vent regroupant un ou plusieurs aérogénérateurs. Seuils :

- 1 Autorisation : comprenant au moins un aérogénérateur dont le mât a une hauteur supérieure ou égale à 50 m.
- 2 Comprenant uniquement des aérogénérateurs dont le mât a une hauteur inférieure à 50 m et au moins un aérogénérateur dont le mât a une hauteur maximale supérieure ou égale à 12 m et pour une puissance totale installée :
 - a Autorisation : supérieure ou égale à 20 MW
 - b Déclaration : inférieure à 20 MW

Le parc éolien de LUCE comprendra 12 aérogénérateurs dont le mât a une hauteur de 120 m.

Cette installation est donc soumise à autorisation au titre des installations classées pour la protection de l'environnement et doit présenter une étude de dangers au sein de sa demande d'autorisation d'exploiter.

2. INFORMATIONS GÉNÉRALES CONCERNANT L'INSTALLATION

2.1 RENSEIGNEMENTS ADMINISTRATIFS

Le projet éolien de LUCE (80) est développé depuis 2013 par ENERTRAG.

Afin de permettre l'identification et le développement du projet de LUCE, ENERTRAG a créé une structure pétitionnaire de la demande de permis de construire et de l'autorisation d'exploiter : ENERTRAG SANTERRE IV.

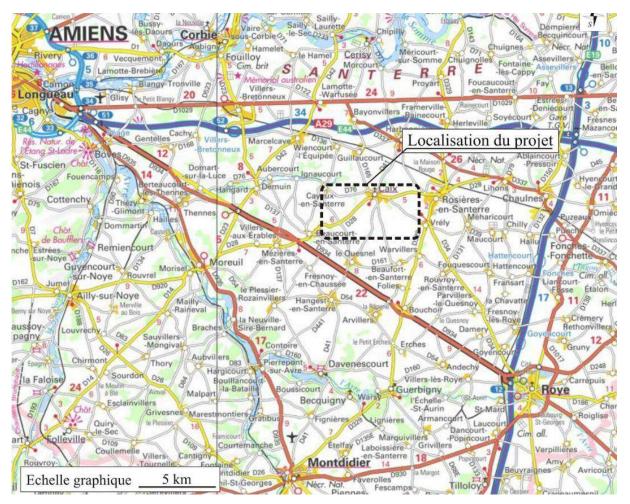
La société ENERTRAG SANTERRE IV a été créée le 08/07/2015. Le premier bilan et compte de résultat seront donc réalisés à la date du 31/03/2016. Ces documents seront certifiés par les commissaires aux comptes mi-juin 2016. Elle est détenue à 99.9% par ENERTRAG ENERGIE SAS et 0.1% par ENERTRAG AG.

Les capacités techniques et financières du pétitionnaire sont présentées dans le Sous-Dossier n°3.

Cette étude de dangers a été réalisée par SAFEGE Ingénieurs-Conseils (rédacteurs : Guillaume POSIADOL, Christophe LONGUEMARE, Pierre ROUSSEL)

2.2 LOCALISATION DU SITE

Le projet concerne les communes de Caix, Cayeux-en-Santerre et Vrély, communes du sud-est du département de la Somme, dans la région Nord Pas-de-Calais Picardie. Il se trouve implanté dans les vastes plaines agricoles de la haute-vallée de la Somme. Le site du projet est éloigné d'environ 25 km du centre d'Amiens, à 18 km au nord de Montdidier et à 21 km au sud d'Albert.


2.3 DEFINITION DE L'AIRE D'ETUDE

Compte tenu des spécificités de l'organisation spatiale d'un parc éolien, composé de plusieurs éléments disjoints, la zone sur laquelle porte l'étude de dangers est constituée d'une aire d'étude par éolienne.

L'aire d'étude correspond à l'ensemble des points situés à la distance inférieure ou égale à 500 mètres de l'installation. Dans le cas du parc éolien de Luce, la distance de 500 mètres est prise à partir du mât des 12 aérogénérateurs. Cette distance équivaut à la distance d'effet retenue pour les phénomènes de projection, telle que définie au paragraphe 8.2.

L'installation comprend également 3 postes de livraison situés au nord-ouest du parc (PDL1) et sur la partie sud-est du parc (PDL2 et 3).

Figure 1 : Localisation générale de l'implantation du projet

Source : IGN Géoportail, traitement SAFEGE 2016

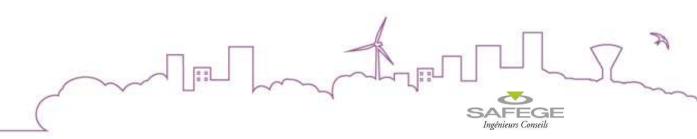
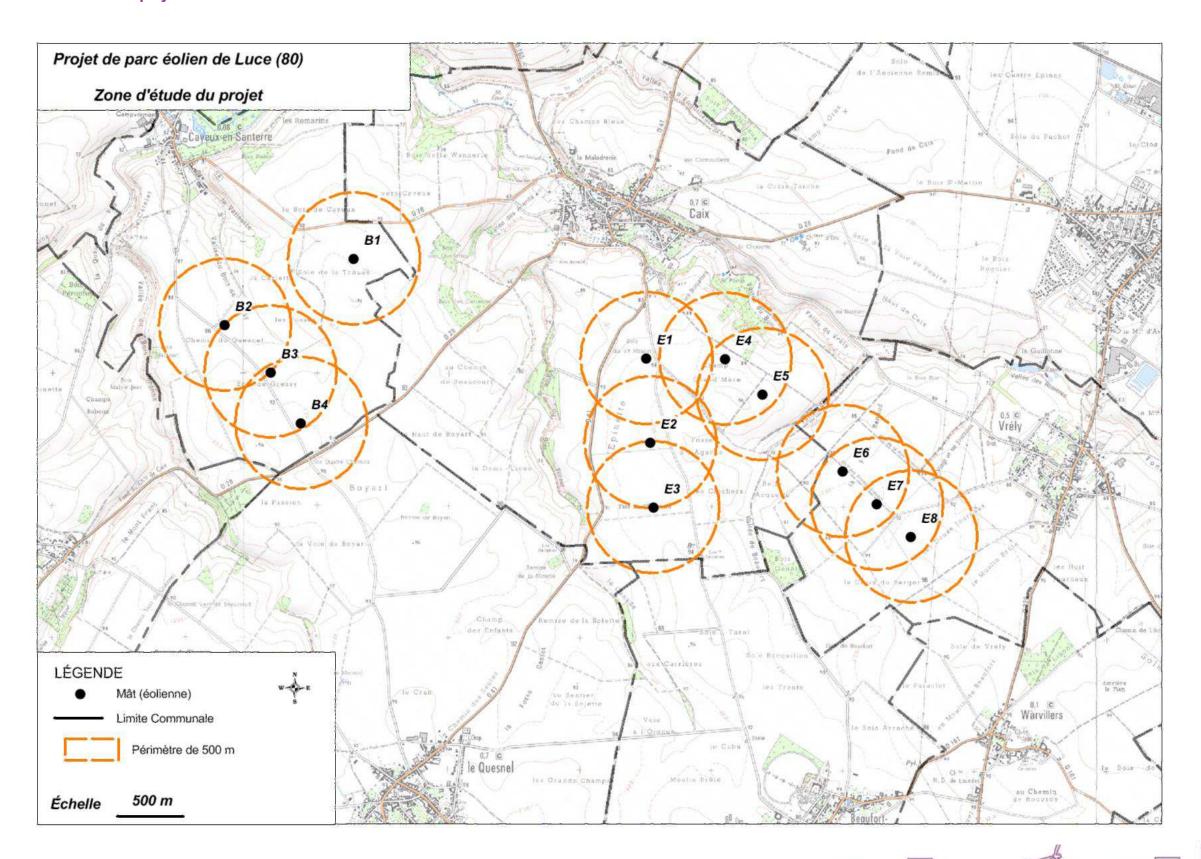



Figure 2 : Zone d'étude du projet

3. DESCRIPTION DE L'ENVIRONNEMENT DE L'INSTALLATION

Ce chapitre a pour objectif de décrire l'environnement dans la zone d'étude de l'installation, afin d'identifier les principaux intérêts à protéger (enjeux) et les facteurs de risques que peut présenter l'environnement vis-à-vis de l'installation (agresseurs potentiels).

3.1 ZONES URBANISEES

La zone d'implantation du projet se situe sur les communes de Caix, Cayeux-en-Santerre et Vrély.

Le tableau suivant fournit les informations concernant le recensement de la population sur les communes d'implantation du projet ainsi que sur les territoires communaux limitrophes.

Tableau 1 : Synthèse des données relatives à la population locale et au logement

Commune	Population communale 2013*	Taux d'accroissement annuel entre 2008 et 2013	Superficie en km²	densité en hab./km²	Nombre de logements	Part de résidences principales	
Communes d'implantation							
Caix	749	4.0%	11.95	62.7	325	86.0%	
Cayeux-en- Santerre	118	13.5%	5.4	21.9	47	76.8%	
Vrély	458	-0.7%	5.7	80.4	219	82.9%	
		Communes dans	un périmètre	de 3 km			
Beaufort-en- Santerre	210	19.3%	4.6	45.7	81	89.6%	
Beaucourt- en-Santerre	188	4.4%	6	31.3	70	94.3%	
Guillaucourt	414	6.4%	6.4	64.7	175	87.1%	
Harbonnières	1664	11.7%	15.4	108.1	674	87.9%	
Ignaucourt	88	8.6%	4.2	21.0	37	89.2%	
Marcelcave	1134	7.0%	12.5	90.7	466	90.4%	
Maucourt	166	9.2%	3.7	44.9	71	84.3%	
Le Quesnel	792	13.5%	11.4	69.5	328	86.9%	
Rosières-en- Santerre	3020	4.5%	13	232.3	1386	91.5%	
Warvilliers	146	14.1%	4.2	34.8	60	91.5%	
Viencourt- l'Equipée	262	3.1%	5.9	44.4	115	93.0%	

Source : Recensement de la population 2013 - Limites territoriales au 1^{er} janvier 2015

Les populations légales 2013 entrent en vigueur le 1er janvier 2016.

La superficie communale des communes interceptées varie du simple (+/- 5 km²) au triple (+/- 15 km²). Cayeux et Vrély présentent des superficies parmi les plus restreintes à l'échelle de la zone étudiée. La superficie cumulée des trois communes interceptées par le projet est de 23 km².

La population totale des communes considérées ci-dessus est de 9 409 habitants. Parmi eux, 1 325 occupent les trois communes interceptées par le projet.

La densité de population de cette zone est inférieure à la moyenne française (117 habitants/km²) avec une moyenne de 68 habitants/km². La densité de population est très disparate ; la commune de Cayeux admettant une densité faible de l'ordre de 22 hab./km².

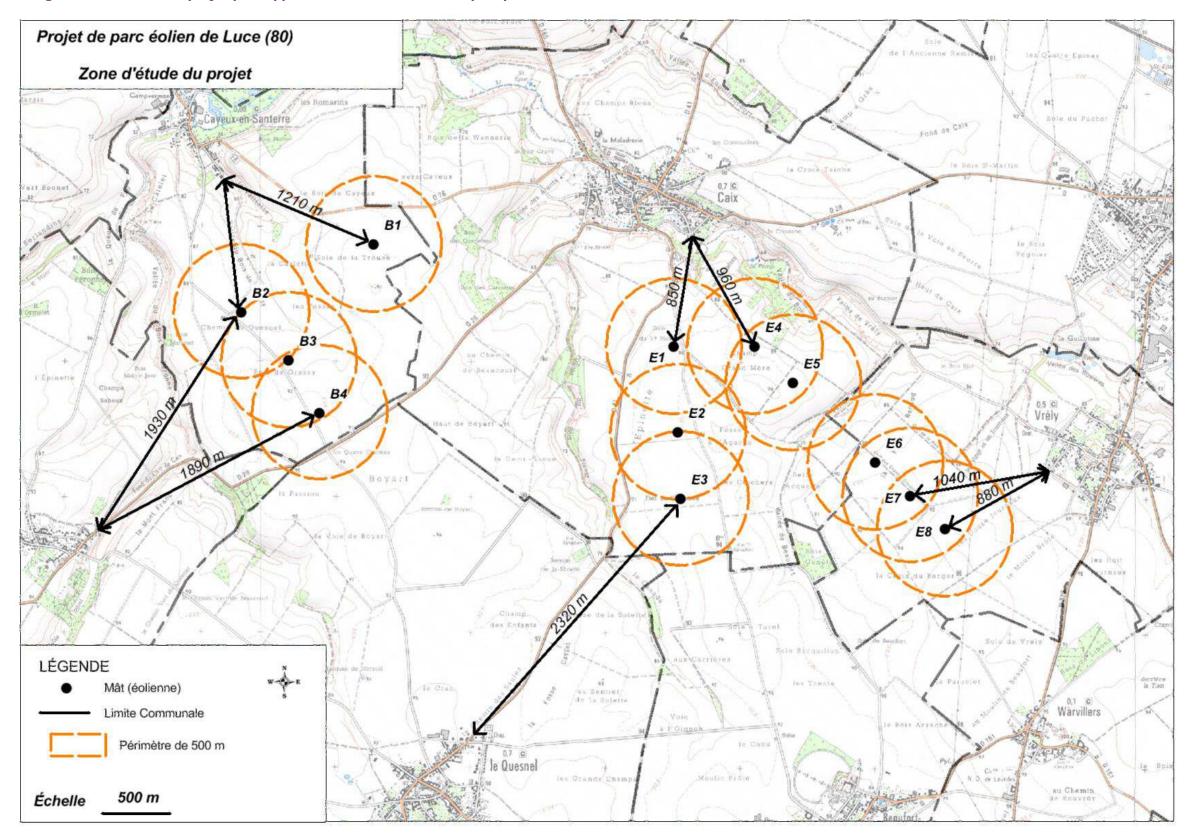
Dans ce territoire, **l'accroissement de la population** est d'un peu moins de +10% au cours des 5 dernières années (2008-2013). L'accroissement moyen est d'environ + 5,6% au droit des communes d'implantation du projet.

L'habitat se compose très majoritairement de résidences principales (88% en moyenne). Ce qui traduit la présence permanente de la majeure partie de la population locale tout au long de l'année. On compte 591 logements au droit des 3 communes d'implantation du projet ; ce qui donne un taux d'occupation moyen des logements de 2,24 habitants/logement ; ce qui est très proche de la moyenne nationale (2,26 occupant par résidence principale en 2012).

D'une manière générale, l'habitat aux abords de la zone de projet est peu dense (comme indiqué précédemment). Il se regroupe néanmoins dans les bourgs communaux et il n'existe pas de hameaux entre les bourgs. Ainsi, les premières zones habitées depuis les lieux d'implantation projetée d'éolienne sont les bourgs périphériques récapitulés ci-dessous et mis en évidence sur la figure suivante.

Tableau 2 : Zones d'habitat les plus proches des emplacements des éoliennes

Eolienne projetée	Distance par rapport à la zone d'habitat la plus proche	Commune, lieu-dit
B1	1 210 m	Cayeux, bourg
B2	1 040 m	Cayeux, bourg
B3	1 470 m	Cayeux, bourg
B4	1 890 m	Beaucourt-en-Santerre, bourg
E1	850 m	Caix, bourg
E2	1 472 m	Caix, bourg
E3	1 970 m	Caix, bourg
E4	960 m	Caix, bourg
E5	1 340 m	Caix, bourg
E6	1 950 m	Rosières-en-Santerre, bourg
E7	1 040 m	Vrély, bourg
E8	880 m	Vrély, bourg


L'essentiel de la présence humaine aux abords du site retenu pour le projet du parc éolien de LUCE est regroupé dans les bourgs des communes environnantes.

Toutes les habitations identifiées sont éloignées de plus de 500 mètres des zones d'implantation des éoliennes les plus proches. L'éolienne la plus proche des lieux habités se trouve à 850 mètres (éolienne E1).

Figure 3 : Situation du projet par rapport aux zones habitées les plus proches

3.1.1 ETABLISSEMENTS RECEVANT DU PUBLIC

La plupart des bourgs ruraux du secteur accueille quelques **services de proximité** mais assez peu, voire pas de **commerces**. Ceux-ci étant également localisés dans les bourgs structurants l'activité situés hors de la zone du projet. Il existe quelques équipements publics communaux dans les centres de Caix, Cayeux et Vrély.

Les territoires des communes les plus proches du projet sont majoritairement constitués de surfaces agricoles.

3.1.2 INSTALLATIONS CLASSEES POUR LA PROTECTION DE L'ENVIRONNEMENT ET INSTALLATIONS NUCLEAIRES DE BASE

Une recherche a été effectuée dans la base de données Internet du site des Installations Classées pour la Protection de l'Environnement (ICPE) pour les communes du projet et celles à proximité.

Aucune des communes de Caix, Cayeux et Vrély n'est concernée par le risque industriel ni couverte par un Plan Particulier d'Intervention (PPI) relatif à un site industriel proche. On notera cependant la présence des sites industriels suivants identifiés par le site de l'inspection des installations classées (MEDDE) :

- « Parc éolien ENERTRAG Santerre I », à Caix, soumis au régime de l'autorisation (ICPE), non SEVESO,
- « RUSCART Christophe » (ferme avicole), à Caix, soumis au régime de l'autorisation (ICPE), non SEVESO,
- « Santerre mobilier occasion SMO » (stockage et récupération de carcasse de véhicules hors d'usage), à Caix, soumis au régime de l'autorisation (ICPE), non SEVESO.

Hormis le parc éolien de Caix exploité par ENERTRAG situé de fait à proximité des éoliennes projetées, les sites industriels recensés sont situés dans le bourg de Caix, à plus de 800 m des sites d'implantation ; il ne s'agit pas de sites SEVESO.

Aucune installation nucléaire de base ne se situe dans l'environnement du projet.

3.1.3 AUTRES ACTIVITES

Les communes concernées par le projet sont des communes rurales consacrant l'essentiel de leur espace à l'agriculture. Notons que le site d'implantation du projet est actuellement voué à l'agriculture (parcelles agricoles cultivées).

Par ailleurs, il n'y a pas d'équipement touristique ni de sentier de randonnée sur la zone du projet proprement dite.

3.2 ENVIRONNEMENT NATUREL

3.2.1 CONTEXTE CLIMATIQUE

La zone d'étude est sous influence d'un régime climatique semi-océanique, caractérisé par des printemps assez secs et un maximum de précipitations en automne avec quelques averses orageuses en été.

1.1.1.1 Températures

La température moyenne annuelle est de 10,9°C. Les moyennes mensuelles varient de 4,0°C en décembre à 18,5°C en aout. Le nombre de jours moyens dont la température minimale est inférieure à 0°C est de 49 jours/an.

L'amplitude statistique varie d'une température extrême basse de -14,6°C (janvier 2009) à une température extrême haute de 38,1°C (aout 2003).

1.1.1.2 Précipitations

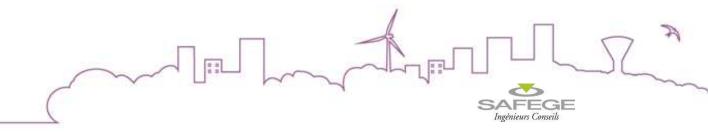
La hauteur moyenne annuelle de précipitations est de 631,2 mm/an. Les précipitations sont globalement bien réparties tout au long de l'année ; le mois le moins arrosé est avril (44,3 mm) ; le plus arrosé décembre (63,7 mm).

La quotidienne maximale de précipitations a été obtenue en aout 2008 (65,7 mm en 24 h).

Le nombre moyen de jours présentant une pluviométrie supérieure à 10 mm est de 14,3 j/an.

3.2.1.1 Vents

Les vents dominants, tant par leur fréquence que par leur intensité sont ceux qui proviennent du sud-ouest (N200° à N240°) : ils représentent 26% des occurrences toutes intensités confondues.


Les vents forts supérieurs à 8 m/s ne représentent cependant que 3,2% des occurrences.

Les mois d'hiver, de décembre à février enregistrent les vents les plus forts. Le nombre moyen de jours avec rafales de plus de 16 m/s est de 43,7 jours/an.

3.2.1.2 Foudre

La densité d'arcs est de 2,39 arcs/km²/an pour la commune de Caix prise comme référence locale, contre une moyenne nationale de 1,53 arcs/km²/an ; ce qui place la commune au 3 831ème rang national.

Le risque lié à la foudre est significatif sur la zone du projet.

3.2.2 RISQUES NATURELS

3.2.2.1 Déclarations d'Etat de Catastrophe Naturelle

La morphologie de la zone d'implantation du projet a favorisé, lors d'évènements climatiques exceptionnels, l'apparition de désordres singuliers dont les conséquences ont nécessité la reconnaissance de catastrophes naturelles pour la commune de Caix. Le site Prim.net (http://macommune.prim.net) recense les arrêtés suivants :

Tableau 3 : Synthèse des arrêtés de catastrophes naturelles concernant les communes d'implantation du projet

Commune	Date de l'arrêté	Type d'évènement
	29/12/1999	inondations, coulées de boue et mouvements de terrain
Caix	06/08/2001	inondations et coulées de boue
Caix	17/01/2003	inondations par remontée de nappe phréatique
	11/01/2005	inondations et coulées de boue
	19/03/1999	inondations et coulées de boue
Cayeux en Santerre	29/12/1999	inondations, coulées de boue et mouvements de terrain
Sancerre	10/05/2010	inondations et coulées de boue
	29/12/1999	inondations, coulées de boue et mouvements de terrain
	06/08/2001	inondations et coulées de boue
Vrély	29/10/2002	Mouvements de terrain
	25/06/2009	Mouvements de terrain
	05/06/2015	Mouvements de terrain

Source: http://macommune.prim.net, mise en forme SAFEGE 2016

Concernant les inondations et les coulées de boue, il s'agit exclusivement de désordres apparus dans le fond de la vallée de la Luce, en aval hydraulique de la zone du projet et hors des sites d'implantation d'éoliennes.

Concernant les mouvements de terrain, ceux-ci se sont produits au droit de sites particuliers **localisés à distance des sites d'implantation d'éoliennes** sur la commune de Vrély (cf. chapitre suivant).

3.2.2.2 Risques d'inondation et de remontée de nappe

Compte tenu de la position des éoliennes projetées en retrait des versants et des fonds des vallées traversant la zone du projet, et de leur cote d'implantation respective de 85 à 94 m NGF, l'ensemble de la zone du projet n'est pas soumise aux aléas d'inondation par débordement de cours d'eau ou par ruissellement. On rappelle qu'au droit des sites retenus pour l'implantation des éoliennes, la nappe est enfouie en conditions de hautes eaux, entre 15 et 29 m de profondeur.

3.2.2.3 Risques liés à l'érosion des terres

Le secteur sud-est du Département de la Somme est sujet à un aléa « moyen » d'érosion des sols. Ceci est localement dû à une perméabilité relativement mauvaise des sols au droit des plaines agricoles. La formation de ruissellement peut apparaître dès lors que la pente est suffisante pour concentrer les écoulements.

Au droit de la zone d'implantation de tels ruissellements favorisant l'érosion des sols sont constatés, bien qu'aucun axe de ruissellement majeur n'ait été identifié. Cependant ils n'affectent pas précisément les sites d'implantation des éoliennes qui sont suffisamment éloignés de l'amorce des versants des vallées traversant la zone du projet.

Le risque spécifique d'érosion des sols au droit même des implantations d'éoliennes peut être qualifié de minime.

3.2.2.4 Risques liés aux mouvements de terrain

La zone d'implantation du projet est concernée par la présence de quelques indices de mouvements de terrain. Les informations extraites sont synthétisées dans le tableau suivant et reportées à la figure suivante.

Ces indices sont très localisés et épars ; ils ne révèlent pas de sensibilité géologique majeure à l'échelle de la zone d'implantation du projet.

L'étude de l'aléa relatif au retrait et au gonflement d'argile indique que les éoliennes projetées se situent au droit de zones d'aléa faible à moyen. Ce critère n'implique pas de recommandations particulières dans le cas de la construction d'éoliennes.

Tableau 4 : Synthèse des informations relatives aux indices de mouvements de terrain

Numéro	Indice (réf. BRGM)	Type de mouvement de terrain	Observations	Distance à l'éolienne la plus proche
1	53000322	Effondrement	Recensement 2005 * Pas de description	D > 400 m (B2)
2	53000322	Effondrement	Recensement 2005 * Pas de description	D > 500 m (B3)
3	53000318	000318 Effondrement Recensement 2005 * Diamètre 10 m / profondeur 3,50 m		D > 900 m (E3)
4	PICCS00001129	Ouvrage civil	Recensement 1997 (Préfecture) Orifice visible	D > 800 m (E4)
5	52002919	Effondrement	Recensement 2002 ** Pas de description	D > 1000 m (E6, E7 et E8)
6	52002920	Effondrement	Recensement 2002 ** Pas de description	D > 1000 m (E6, E7 et E8)
7	52002921 Effondrement		Recensement 2002 ** Pas de description	D > 1000 m (E6, E7 et E8)

^{*} Mise à jour de l'inventaire des mouvements de terrain (Montdidier et Clermont) Arrondissements de Montdidier et Clermont (BRGM/RP-53728-FR).

Tous les indices d'effondrements sont localisés à plus de 400 m des sites d'implantation des éoliennes **ce qui exclut toute interférence physique directe**.

^{**} Recensement et analyse des mouvements de terrain survenus en 2000 et 2001 dans les arrondissements de Montdidier et Clermont (BRGM/RP-51763-FR).

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Toutefois, le DDRM du Département de la Somme considère que la commune de Vrély est concernée par le risque relatif aux mouvements de terrain et que la commune de Caix est concernée par le risque relatif à la présence de cavités souterraines sans que cela ne présente un risque majeur. Aucun Plan de Prévention des Risques Naturels lié aux mouvements de terrain n'est prescrit ou approuvé dans ce secteur.

_85 C01 Cayeux-en-S. C02 Caix E1 E4 C05 人 C06 5, 6, 7 E2. E3 E8 Légende Aléa retrait / oo Aléa fort Aléa moyen Eolienne existante Aléa faible Limites communales Echelle 500 m Indice de mouvement de terrain A priori nu

Figure 4 : Situation du projet par rapport aux indices d'effondrements recensés

Source : Infoterre (BRGM), traitement SAFEGE

3.2.2.5 Aléas sismiques

La géologie structurale du secteur d'étude ne présente pas de contrainte particulière pour le projet éolien.

La zone d'étude est classée en zone 1 définie comme une « **zone de sismicité très faible** » pour laquelle aucune règle parasismique particulière ne s'applique.

3.2.3 ENVIRONNEMENT MATERIEL

3.2.3.1 Transport routier

La zone d'implantation du projet se trouve à proximité d'axes routiers d'envergure nationale ou régionale situés à moins de 10 km de la zone du projet ; il s'agit des axes suivants :

- l'A29 (Amiens / Saint-Quentin), à 4,5 km au nord, dont le TMJA de 2007 était de +/- 16 000 veh./j. à hauteur d'Harbonnières.
- la RD1029 (Amiens / Saint-Quentin), à 7 km au nord. A Villers-Bretonneux, le TMJA en 2014 était de 6 749 veh./j. dont 12% de poids-lourds.
- la RD934 au sud (Amiens / Roye) à 4,5 km au sud. A Le Quesnel, le TMJA en 2014 était de 10 992 veh./j. dont 12% de poids-lourds.
- l'A1 (Paris / Lille) à 8 km à l'est dont le TMJA en 2007 était de 54 000 véh./j. à hauteur de Roye.

Ces axes majeurs supportant un trafic journalier supérieur à 6 000 véh./j composé pour environ 12% de poids-lourds, drainent une grande partie des flux régionaux.

Plus localement, un réseau de **voies départementales primaires** permet de relier les principales villes entre elles :

- RD28 entre Moreuil et Rosières-en-Santerre, traversant la zone du projet ; entre Caix et Rosières, le TMJA de 2014 était de 2 034 veh./j, dont 5% de poids-lourds,
- RD329 entre Folies et Bouchoir, le TMJA de 2014 était de 1 097 veh./j, dont 11% de poidslourds,
- RD34 entre Vrély et Rouvroy-en-Santerre, le TMJA de 2014 était de 1 813 veh./j, dont 8% de poids-lourds.

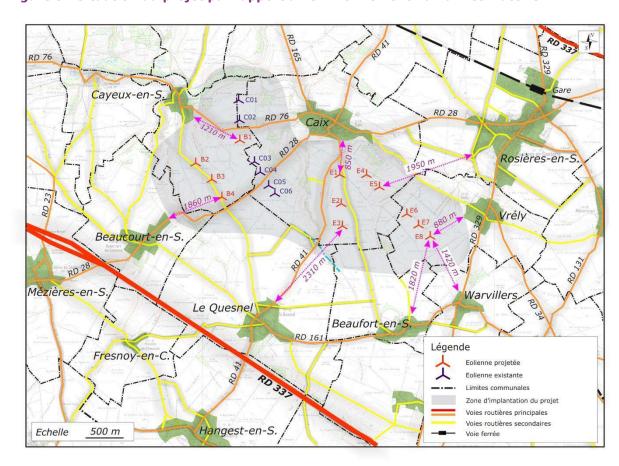
Ces axes secondaires présentent généralement un trafic compris entre 1 000 et 2 000 véh./j et acceptent une proportion de poids-lourds proche de 5 à 10%.

Enfin, la desserte locale est assurée par un réseau dense de voies départementales et communales qui relient les bourgs ruraux entre eux ; les plus proches de la zone du projet sont :

- La RD76 entre Cayeux-en-Santerre et Caix, à proximité au nord de la zone du projet,
- La RD41 entre Caix et Le Quesnel, **traversant la zone du projet**; entre Caix et Le Quesnel, le TMJA de 2014 était de 561 veh./j, dont 11% de poids-lourds,
- La RD61 entre Le Quesnel et Beaufort-en-Santerre ; le TMJA en 2014 était de 528 veh./j dont 7% de poids-lourds,
- La voie communale reliant le bourg de Caix à celui de Beaufort-en-Santerre,
- La voie communale reliant le bourg de Caix à celui de Vrély,

Ce réseau de voies de desserte présente un trafic relativement modeste inférieur à 1 000 veh./j.

On notera également que les plaines agricoles du secteur sont traversées de **chemins d'exploitation agricole** qui permettent d'accéder aux parcelles les plus isolées. Ce maillage est dense et les chemins sont la plupart du temps en très bon état


SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

On retiendra que les routes départementales traversant la zone d'implantation du projet admettent un trafic moyen journalier inférieur à 2 000 veh./j.

La situation du projet par rapport au réseau routier est proposée à la figure page suivante.

Figure 5 : Situation du projet par rapport à l'environnement humain et matériel

Source : IGN (Géoportail), traitement SAFEGE

3.2.3.2 Autres Transports

La ligne ferroviaire la plus proche est celle reliant Amiens à Laon (ligne 261 000) et desservant les gares de Marcelcave, Rosières-en-Santerre et Chaulnes. Elle passe à 2,6 km au nord du bourg de Caix. Elle est reportée sur la figure précédente.

Aucune infrastructure aéroportuaire civile n'est présente dans le secteur d'étude. Le site le plus proche se trouve à environ 17 km du site (L'aéroport d'Albert-Bray à Méaulte).

Il n'y a pas d'axe de transport fluvial proche.

3.2.3.3 Réseaux publics et privés

A. Servitudes aériennes

La zone d'implantation des éoliennes projetées n'est pas concernée par des servitudes radioélectriques et/ou de dégagement, liées aux équipements de l'aviation civile ou par des servitudes liées à la présence de radar Météo France.

B. Transport d'électricité

Les lignes intéressant la zone d'implantation du projet sont les suivantes.

- Ligne haute tension 63 KV « Roye-Vauvillers 1 »,
- Ligne haute tension 63 KV « Roye-Vauvillers 2 »,
- Lignes de moyennes et basses tensions inférieures à 63 kV.

Elles génèrent des servitudes I4 relative sur les communes de Caix et de Vrély relatives aux servitudes d'établissement des canalisations électriques.

Les lignes transitent à plus de 150 m des éoliennes les plus proches (E1, E2, E7, E8).

Il n'y a pas de poste transformateur électrique sur la zone du projet.

C. Canalisation de transport d'hydrocarbures et de gaz

Aucun ouvrage de transport de gaz haute-pression ou d'hydrocarbure n'est exploité sur la zone étudiée. Il en est de même pour les autres produits chimiques recensés comme matières dangereuses.

D. Réseaux d'assainissement

Le projet n'est pas à l'origine de production d'eaux usées. Aucun raccordement au réseau d'assainissement n'est prévu. Seuls quelques réseaux de drainage agricole intéressent la zone retenue pour l'implantation du projet.

E. Réseaux d'alimentation en eau potable

Outre le réseau d'eau potable enterré sous les voiries, il n'existe pas de servitudes liées à la présence de canalisations publiques d'eau potable et d'assainissement dans la zone d'implantation du projet. On notera cependant qu'il existe deux champs captants majeurs à Caix, exploités par le SIAEP du Santerre et situés à plus de 600 m des éoliennes les plus proches (E1 et E4). Les implantations se placent d'ailleurs à l'extérieur des périmètres de protection immédiate et rapprochée des sites de captage et un Hydrogéologue Agréé en matière d'hygiène et de santé publique a émis un avis favorable sur le projet de LUCE sous réserve de l'application de quelques mesures préventives liées au déroulement du chantier.

4. DESCRIPTION DE L'INSTALLATION

Ce chapitre a pour objectif de caractériser l'installation envisagée ainsi que son organisation et son fonctionnement, afin de permettre d'identifier les principaux potentiels de danger qu'elle représente, au regard notamment de la sensibilité de l'environnement décrit précédemment.

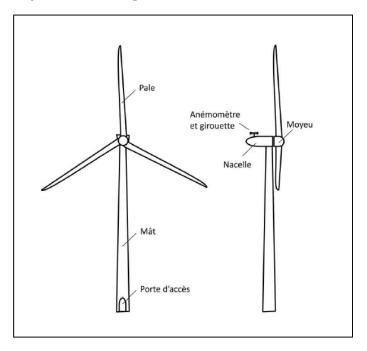
4.1 CARACTERISTIQUES DE L'INSTALLATION

4.1.1 CARACTERISTIQUES GENERALES D'UN PARC EOLIEN

Un parc éolien est une centrale de production d'électricité à partir de l'énergie du vent. Il est composé de plusieurs aérogénérateurs et de leurs annexes (cf. schéma du raccordement électrique au chapitre 4.3.1) :

- Plusieurs éoliennes fixées sur une fondation adaptée, accompagnée d'une aire stabilisée appelée « plateforme » ou « aire de grutage »,
- Un réseau de câbles électriques enterrés permettant d'évacuer l'électricité produite par chaque éolienne vers le ou les poste(s) de livraison électrique (appelé « réseau interéolien »),
- Un ou plusieurs poste(s) de livraison électrique, concentrant l'électricité des éoliennes et organisant son évacuation vers le réseau public d'électricité au travers du poste source local (point d'injection de l'électricité sur le réseau public),
- Un réseau de câbles enterrés permettant d'évacuer l'électricité regroupée au(x) poste(s) de livraison vers le poste source (appelé « réseau externe » et appartenant le plus souvent au gestionnaire du réseau de distribution d'électricité),
- Un réseau de chemins d'accès,
- Éventuellement des éléments annexes type mât de mesure de vent, aire d'accueil du public, aire de stationnement, etc.

Éléments constitutifs d'un aérogénérateur


Au sens du l'arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement, les aérogénérateurs (ou éoliennes) sont définis comme un dispositif mécanique destiné à convertir l'énergie du vent en électricité, composé des principaux éléments suivants : un mât, une nacelle, le rotor auquel sont fixées les pales, ainsi que, le cas échéant, un transformateur.

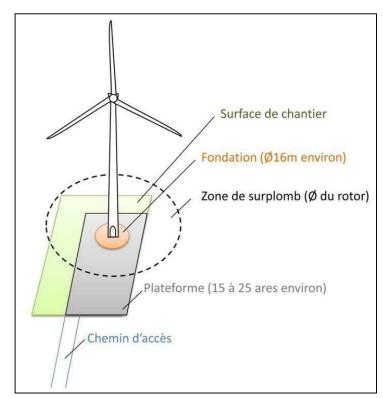
Les aérogénérateurs se composent de trois principaux éléments :

- Le rotor qui est composé de trois pales construites en matériaux composites et réunies au niveau du moyeu. Il se prolonge dans la nacelle pour constituer l'arbre lent.
- Le mât est généralement composé de 3 à 4 tronçons en acier ou 15 à 20 anneaux de béton surmontés d'un ou plusieurs tronçons en acier. Dans la plupart des éoliennes, il abrite le transformateur qui permet d'élever la tension électrique de l'éolienne au niveau de celle du réseau électrique.

- La nacelle abrite plusieurs éléments fonctionnels :
- le générateur transforme l'énergie de rotation du rotor en énergie électrique ;
- le multiplicateur (certaines technologies n'en utilisent pas) ;
- le système de freinage mécanique ;
- le système d'orientation de la nacelle qui place le rotor face au vent pour une production optimale d'énergie;
- les outils de mesure du vent (anémomètre, girouette),
- le balisage diurne et nocturne nécessaire à la sécurité aéronautique.

Figure 6 : Schéma simplifié d'un aérogénérateur

Emprise au sol


Plusieurs emprises au sol sont nécessaires pour la construction et l'exploitation des parcs éoliens :

- La surface de chantier est une surface temporaire, durant la phase de construction, destinée aux manœuvres des engins et au stockage au sol des éléments constitutifs des éoliennes.
- La fondation de l'éolienne est recouverte de terre végétale. Ses dimensions exactes sont calculées en fonction des aérogénérateurs et des propriétés du sol.
- La zone de surplomb ou de survol correspond à la surface au sol au-dessus de laquelle les pales sont situées, en considérant une rotation à 360° du rotor par rapport à l'axe du mât.
- La plateforme correspond à une surface permettant le positionnement de la grue destinée au montage et aux opérations de maintenance liées aux éoliennes. Sa taille varie en fonction des éoliennes choisies et de la configuration du site d'implantation.

Figure 7 : Schéma Illustration des emprises au sol d'une éolienne

Les dimensions sont données à titre d'illustration pour une éolienne d'environ 150 m de hauteur totale

Chemins d'accès

Pour accéder à chaque aérogénérateur, des pistes d'accès sont aménagées pour permettre aux véhicules d'accéder aux éoliennes aussi bien pour les opérations de constructions du parc éolien que pour les opérations de maintenance liées à l'exploitation du parc éolien :

- L'aménagement de ces accès concerne principalement les chemins agricoles existants ;
- Si nécessaire, de nouveaux chemins sont créés sur les parcelles agricoles.

Durant la phase de construction et de démantèlement, les engins empruntent ces chemins pour acheminer les éléments constituants les éoliennes et de leurs annexes.

Durant la phase d'exploitation, les chemins sont utilisés par des véhicules légers (maintenance régulière) ou par des engins permettant d'importantes opérations de maintenance (ex : changement de pale).

4.1.2 ACTIVITE DE L'INSTALLATION

L'activité principale du parc éolien de LUCE est la production d'électricité à partir de l'énergie mécanique du vent avec une hauteur (mât + nacelle) de 120 m. Le parc éolien de LUCE est donc une installation soumise à la rubrique 2980 des installations classées pour la protection de l'environnement.

4.1.3 COMPOSITION DE L'INSTALLATION

Le parc éolien de LUCE sera composé de 12 aérogénérateurs implantés de manière à constituer une extension efficace du parc éolien actuel de Caix (6 aérogénérateurs) et de 3 postes de livraison qui seront construit à Cayeux (PDL1) en bordure d'une voie communale et à Caix (PDL2&3) au cœur des plaines agricoles, en retrait des zones habitées et des voiries.

Ces équipements sont tous localisés sur les communes de Caix, Cayeux et Vrély.

Chaque aérogénérateur a une hauteur de moyeu de 120 mètres (soit une hauteur maximale de mât de 120 mètres au sens de la réglementation ICPE) et un diamètre de rotor de 116,80 mètres maximum, pour une hauteur totale en bout de pale maximale de 178,40 mètres.

Le tableau suivant indique les coordonnées géographiques des aérogénérateurs.

Tableau 5 : Coordonnées des éoliennes du parc de LUCE

N°	Lambert 93		WGS84		Altitude au sol	Altitude maximale (en bout de pales)
	X (m)	Y (m)	Longitude	Latitude	m NGF	m NGF
B1	672501.98	6968319.58	2.618220	49.813134	92	270,50
B2	671518.04	6967820.67	2.604594	49.808608	86	263,50
В3	671868.00	6967461.36	2.609477	49.805396	90	268,50
B4	672095.41	6967072.14	2.612660	49.801909	93	271,50
E1	674727.95	6967555.28	2.649172	49.806360	93	271
E2	674755.26	6966917.52	2.649590	49.800632	93	271,50
E3	674776.42	6966423.47	2.649914	49.796194	93	271,50
E4	675328.94	6967550.80	2.657515	49.806344	90	269,50
E5	675610.33	6967280.25	2.661437	49.803924	92,50	271
E6	676220.89	6966690.46	2.669947	49.798648	91	270,50
E7	676478.42	6966442.05	2.673536	49.796426	93	271,50
E8	676734.48	6966195.08	2.677103	49.794217	94	272

Tableau 6 : Coordonnées des points de livraison (PDL)

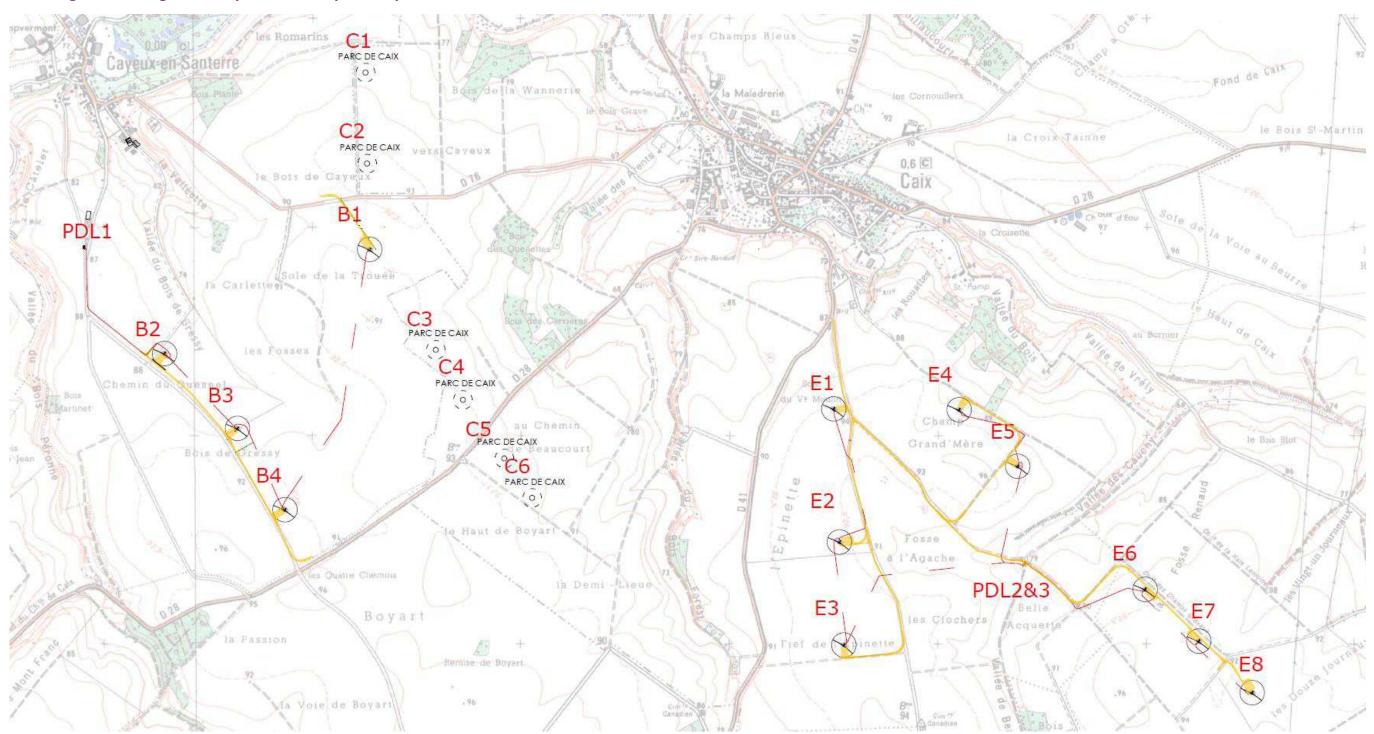
N°	Lambert 93		wg	Altitude au sol	
	X (m)	Y (m)	Longitude	Latitude	m NGF
PDL 1*	671 132 m	6 968 330 m	2°35′57.2″E	49°48′46.9″N	87 m
PDL 2&3*	675 640 m	6 966 811 m	2°39′42.1″E	49°47′58.6″N	80 m

^{* :} coordonnées au centre du bâtiment

Les caractéristiques du projet du parc de LUCE sont données dans le tableau suivant.

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Tableau 7 : Fiche technique du projet de LUCE


	Implantation de 12 éoliennes en plaine agricole entre les bourgs de Cayeux-en-Santerre, Caix et Vrély (Somme)
	Implantation sur des parcelles agricoles privées
Programme arrêté	Constructeur: NORDEX
pour le parc éolien de LUCE	Type de machine: N117
ue Loce	Hauteur du mât : 120 m / hauteur totale : 178,40 m
	Diamètre du rotor : 116,80 m
	Éoliennes certifiées par un organisme indépendant
	Puissance unitaire d'une éolienne : 3 MW
	Puissance du parc : 36 MW
Caractéristiques quantitatives	Production annuelle estimée à 108 GWh soit une production nette estimée d'environ 106,92 GWh (facteur de disponibilité de 97%) pour une durée de fonctionnement de 3 000 heures par an
51.1.4	Une plateforme de levage par éolienne d'une surface unitaire d'environ 1 500 m²
Plateformes des éoliennes	Plateformes et chemins d'accès conservés en phase exploitation (permettant le changement éventuel d'éléments d'éoliennes)
Postes de livraison –	3 postes de livraison : deux situés sur la commune de Caix, un situé sur la commune de Cayeux en Santerre
câblage	Les câbles de liaisons inter-éoliennes, éoliennes – poste de livraison, poste de livraison - poste source seront enterrés
	Chantier d'une durée estimée à 13 mois (jusqu'à la mise en service)
	Type de fondations : Béton armé et forme circulaire
Chantier	Diamètre de fondation : Diamètres : 21,5 m (hors eaux)
	Profondeur de la fouille : Environ 2,50 m
	Installations exploitées par du personnel ENERTRAG qui contrôlera les engagements contractuels (disponibilité des machines et maintenance)
	Fonctionnement optimal des éoliennes grâce aux automates en place dans chacune d'elles mais aussi au CCE (supervision 7j/7j H24)
Exploitation du parc	Opérations d'entretien et de maintenance assurées par une société sous-traitante habilitée et optimisées par les conducteurs et exploitants (la télésurveillance n'est présente que dans les Postes, sur les machines, il s'agit de supervision)
	Vérification générale périodique des installations par un bureau de contrôle certifié pendant toute la phase d'exploitation

La figure suivante présente l'emplacement des éoliennes, des postes de livraison, des plateformes d'exploitation et des câbles électriques enterrés.

Figure 8 : Plan général du parc éolien en phase exploitation

Source : ENERTRAG

4.2 FONCTIONNEMENT DE L'INSTALLATION

4.2.1 PRINCIPE DE FONCTIONNEMENT D'UN AEROGENERATEUR

Les instruments de mesure de vent placés au-dessus de la nacelle conditionnent le fonctionnement de l'éolienne. Grâce aux informations transmises par la girouette qui détermine la direction du vent, le rotor se positionnera pour être continuellement face au vent.

Les pales se mettent en mouvement lorsque l'anémomètre (positionné sur la nacelle) indique une vitesse de vent d'environ 10 km/h et c'est seulement à partir de 12 km/h que l'éolienne peut être couplée au réseau électrique. Le rotor et l'arbre dit «lent» transmettent alors l'énergie mécanique à basse vitesse (entre 5 et 20 tours/min) aux engrenages du multiplicateur, dont l'arbre dit «rapide» tourne environ 100 fois plus vite que l'arbre lent. Certaines éoliennes sont dépourvues de multiplicateur et la génératrice est entraînée directement par l'arbre « lent » lié au rotor. La génératrice transforme l'énergie mécanique captée par les pales en énergie électrique.

La puissance électrique produite varie en fonction de la vitesse de rotation du rotor. Dès que le vent atteint environ 50 km/h à hauteur de nacelle, l'éolienne fournit sa puissance maximale. Cette puissance est dite «nominale».

Pour un aérogénérateur de 2,5 MW par exemple, la production électrique atteint 2 500 kWh dès que le vent atteint environ 50 km/h. L'électricité produite par la génératrice correspond à un courant alternatif de fréquence 50 Hz avec une tension de 400 à 690 V. La tension est ensuite élevée jusqu'à 20 000 V par un transformateur placé dans chaque éolienne pour être ensuite injectée dans le réseau électrique public.

Lorsque la mesure de vent, indiquée par l'anémomètre, atteint des vitesses de plus de 100 km/h (variable selon le type d'éoliennes), l'éolienne cesse de fonctionner pour des raisons de sécurité. Deux systèmes de freinage permettront d'assurer la sécurité de l'éolienne :

- le premier par la mise en drapeau des pales, c'est-à-dire un freinage aérodynamique : les pales prennent alors une orientation parallèle au vent ;
- le second par un frein mécanique sur l'arbre de transmission à l'intérieur de la nacelle.

Les caractéristiques techniques développées ci-après sont représentatives des modèles d'éoliennes répondant aux exigences du cahier des charges de la société ENERTRAG SANTERRE IV.

4.2.1.1 Les fondations

Pour assurer un ancrage solide aux éoliennes, les sites d'implantation feront l'objet d'une excavation afin de pouvoir y couler un socle de fondation en béton. Le type et le dimensionnement exacts des fondations sont déterminés suite aux résultats de l'expertise géotechnique.

Dans le cas du projet les fondations auront les caractéristiques suivantes.

Le massif de fondation est composé de béton armé et conçu pour répondre aux prescriptions de l'Eurocode 2.

Une fois la fouille réalisée, le sol est homogénéisé par une fine couche de GNT (0,10 m) qui sera compactée pour obtenir une résistance minimale de 80Mpa.

Puis, un béton de propreté d'environ 0,10 m d'épaisseur est coulé dans le fond de la fouille. Il permettra d'obtenir un sol propre mais surtout parfaitement plan.

Le béton est naturellement résistant aux efforts de compression. En revanche, pour les efforts de cisaillement, le ferraillage lui permettra de répartir les contraintes infligées par une éolienne se dressant 180 m au-dessus de lui.

Vient alors la phase de coulage de la semelle, qui nécessite 350 m³ de béton pour créer une semelle de 21,50 m de diamètre pour une hauteur de 3 m. Celui-ci doit être vibré en permanence, afin d'éviter la formation de petites bulles d'air ou de ségrégation au sein même de la fondation.

La couronne, qui constitue la première partie du mât de l'éolienne, est également ferraillée puis coulée. Des aciers de la semelle laissés en attente permettront aux deux éléments (semelle et couronne) d'être liés ensemble.

Cette structure répond aux calculs de dimensionnement des massifs qui prennent en compte les caractéristiques suivantes :

- Le type d'éolienne ;
- La nature des sols ;
- Les conditions météorologiques extrêmes ;
- Les conditions de fatigue.

4.2.1.2 Le mât

Le mât des éoliennes (également appelée tour) est constituée de plusieurs sections tubulaires métalliques (en acier), de plusieurs dizaines de millimètres d'épaisseur et de forme tronconique, assemblées entre elles par brides. Fixée par une bride à l'insert disposé dans le massif de fondation, le mât est autoportant.

La hauteur du mât, ainsi que ses autres dimensions, sont en relation avec le diamètre du rotor, les classes des vents la topologie du site et la puissance.

Le mât a avant tout une fonction de support de la nacelle mais il permet également le cheminement des câbles électriques de puissance et de contrôle et abrite :

- Une échelle d'accès à la nacelle ;
- Un élévateur de personnes ;
- Une armoire de contrôle et des armoires de batteries d'accumulateurs (en point bas);
- Les cellules de protection électriques.

Les éoliennes du projet auront une hauteur de mât de 120 mètres. Elles seront constituées de 7 sections tronconiques. Le diamètre au sol est d'environ 4,07 mètres.

Tableau 8 : Caractéristiques du mât

Description	Matériau	Hauteur	Diamètre section basse (DA)	Diamètre section haute (DB)	Nombre de sections	Poids
Tour conique en acier	Acier	120 m	4,07 m	3,26 m	7	466,5 T

Source : ENERTRAG, d'après NORDEX

4.2.1.3 La nacelle

L'enveloppe de la nacelle est composée de fibre de verre. Le châssis de la nacelle est lui composé d'une structure métallique qui sert de support aux différents éléments principaux de la nacelle : arbre de transmission, génératrice, multiplicateur, transformateur, armoires de commandes. La trappe dans le plancher permet de hisser via le palan l'outillage nécessaire à la maintenance et l'évacuation du personnel. Une trappe vitrée d'accès au toit de la nacelle permet la maintenance des feux anticollision, des girouettes, des anémomètres, du parafoudre et du système de refroidissement.

Le toit est équipé de capteurs de vent. Le châssis de la nacelle est composé de deux parties : une partie avant en fonte et une structure en treillis à l'arrière. La partie avant de la nacelle sert de base au groupe motopropulseur en transmettant les forces dynamiques du rotor à l'arbre moteur. La partie arrière comporte les panneaux de commandes, la génératrice et le transformateur.

Tableau 9 : Caractéristiques de la nacelle

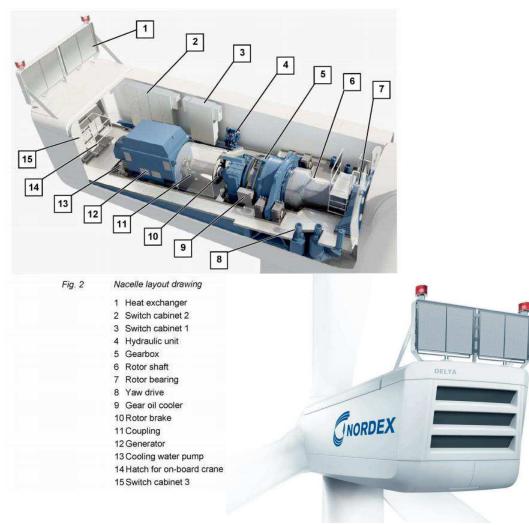
	Longueur	Hauteur (capot démonté)	Poids (hors rotor)
N117 – 3 MW	12.8 m	4 m	51 tonnes

4.2.1.4 Le rotor et les pales

Les éoliennes NORDEX N117-3 MW sont équipées d'un rotor composé de trois pales et du moyeu. Les caractéristiques générales des pales sont les suivantes :

Tableau 10 : Caractéristiques des pales de l'éolienne

	N117 - 3 MW
Diamètre du rotor	116.8 m
Surface balayée par le rotor	10 715 m²
Longueur d'une pale	57,3 m
Poids d'une pale	10.6 tonnes
Matériau des pales	Fibre de verre et fibre carbone


Source: ENERTRAG

Les pales sont relativement légères grâce à l'utilisation d'une gamme de nouveaux matériaux. Par exemple la fibre de carbone – un matériau résistant, rigide et très léger - a été utilisée en remplacement de la fibre de verre pour l'élaboration de la structure supportant la charge des pales. Grâce à la résistance de cette fibre, il est devenu possible de réduire la quantité de matériau employée pour la réalisation des pales et donc de diminuer appréciablement le poids total ainsi que les charges.

De plus, les profils aérodynamiques des pales font partie d'une nouvelle génération permettant d'augmenter la production d'énergie, de réduire l'impact de la rugosité sur le bord d'attaque de la pale, et de maintenir une bonne continuité géométrique entre un profil aérodynamique et le suivant. La géométrie de ces nouvelles pales a été définie en optimisant la relation entre l'impact général de la charge sur l'éolienne et sa production annuelle d'énergie.

La conception innovante de la pale améliore la performance de l'éolienne et permet d'augmenter son rendement, tout en réduisant les charges transférées à la machine.

Figure 9 : Schéma d'une nacelle

4.2.1.5 Le transformateur

Les éoliennes sont équipées d'un système générateur/transformateur fonctionnant à vitesse variable (et donc à puissance mécanique fluctuante).

Le générateur, de type asynchrone, convertit l'énergie mécanique en énergie électrique. Il délivre deux niveaux de tension différents (690 V et 480 V en courant alternatif) qui sont dirigés vers le transformateur élévateur de tension.

Un dispositif de contrôle permet de réguler le fonctionnement du générateur (contrôle de la puissance injectée dans le générateur et de celle injectée dans le réseau en fonction des régimes de marche, basculement régime étoile-triangle, contrôle de la qualité du courant produit...). Le refroidissement du générateur est effectué par un système de circulation forcée d'air.

En sortie de générateur, les deux niveaux de tension (480 et 690 V) sont élevés jusqu'à 20 000 V par un transformateur sec. Le courant de sortie est régulé par des dispositifs électroniques de façon à pouvoir être compatible avec le réseau public.

Le transformateur est situé dans une pièce séparée, verrouillée dans la nacelle avec les parafoudres montés sur le côté haute tension du transformateur.

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Dans le cas des éoliennes du futur parc éolien, il s'agit d'un transformateur triphasé de type sec.

Un câble relie ensuite la nacelle et les cellules de protection du réseau, disposées dans une armoire en partie basse du mât. Il s'agit de cellules à isolation gazeuse qui permettent une séparation électrique de l'éolienne par rapport aux autres machines du champ éolien en cas d'anomalie (court-circuit, surtension, défaut d'isolement...).

4.2.2 SECURITE DE L'INSTALLATION

Les éoliennes sont équipées de dispositifs de sécurité afin de détecter tout début de dysfonctionnement et de limiter les risques liés à ceux-ci.

Ci-dessous sont présentés succinctement les dispositifs de sécurité et de surveillance à mettre en place, ceux-ci étant repris plus en détail au chapitre 9.

- arrêt d'urgence,
- dispositif de freinage (frein aérodynamique principal et frein mécanique auxiliaire),
- protection de survitesse,
- protection contre la foudre,
- mise à la terre,
- surveillance des dysfonctionnements électriques,
- balisage aéronautique,
- détecteur de formation de glace,
- surveillance des vibrations et turbulences,
- surveillance des échauffements et températures,
- surveillance de pression et de niveau (+ système passif de rétention dans la nacelle),
- détection incendie,
- détection anti-intrusion,
- extincteurs,
- surveillance d'autres paramètres, inspections, opérations de maintenance.

4.2.3 EXPLOITATION DU PARC

La maintenance des éoliennes sera effectuée par les équipes locales du fournisseur de machines via un contrat de maintenance avec le Maitre d'Ouvrage. La maintenance pratiquée est de deux types :

- La maintenance préventive, qui correspond aux opérations d'entretien et de remplacement de pièces d'usures, préétablies par le fabricant;
- La maintenance curative qui concerne des interventions en cas d'incident.

Les modalités d'exploitation appliquées par ENERTRAG sont détaillées au chapitre 9.2 page 45.

4.2.4 STOCKAGE DE PRODUITS DANGEREUX ET FLUX

Conformément à l'article 16 de l'arrêté du 26 août 2011, aucun produit dangereux ne sera stocké dans les éoliennes du parc de LUCE.

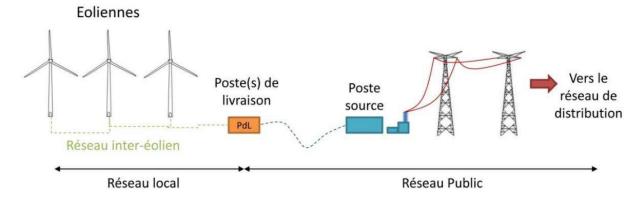
Il est à noter que les produits présents en phase d'exploitation (huile hydraulique, huile de lubrification des transformateurs, graisses, eau glycolée, hexafluorure de soufre) ne sont pas considérés comme du stockage dans la mesure où ils sont intégrés à la machine et sont nécessaires à son bon fonctionnement. La synthèse des produits présents dans les installations est donnée dans le Tableau 14.

Aucun produit n'est stocké dans les machines :

- ni les produits d'entretien / de nettoyage de tout ou partie de la machine elle-même ou des outils nécessaires à la maintenance,
- ni les produits employés pour les maintenances,
- ni les déchets issus de la maintenance (même dans le cas où une maintenance dure plusieurs jours).

Quelle que soit la situation, l'ensemble des produits employés pour la maintenance ainsi que les éventuels déchets dangereux générés par le travail effectué sont remportés par les équipes intervenantes et ne sont jamais laissés en machine.

Les substances ou produits chimiques mis en œuvre dans l'installation sont limités.



4.3 FONCTIONNEMENT DES RESEAUX DE L'INSTALLATION

4.3.1 RACCORDEMENT ELECTRIQUE

La figure suivante illustre le principe du raccordement électrique d'un parc éolien.

Figure 10 : Principe du raccordement électrique des installations

4.3.1.1 Poste de livraison électrique

Le poste de livraison électrique matérialise le nœud de raccordement de toutes les éoliennes avant que l'électricité ne soit injectée dans le réseau public d'électricité.

Un poste de livraison électrique est composé de 2 ensembles :

- une partie « électrique de puissance » où l'électricité produite par l'ensemble des éoliennes est livrée au réseau public d'électricité avec les qualités attendues (Tension, Fréquence, Phase) et où des dispositifs de sécurité du réseau permettent à son gestionnaire (ERDF ou RTE) de déconnecter instantanément le parc en cas d'instabilité du réseau;
- une partie « supervision » où l'ensemble des paramètres de contrôle des éoliennes sont collectés dans une base de données, elle-même consultable par l'exploitant du parc.

Certains parcs éoliens, par leur taille, peuvent posséder plusieurs postes de livraison, voire se raccorder directement sur un poste source, qui assure la liaison avec le réseau de transport d'électricité (lignes haute tension). C'est le cas du projet de Luce.

Un poste électrique standard permet de raccorder une puissance de 12 MW environ au réseau ERDF. Compte tenu de la puissance maximale envisagée sur le parc de LUCE, 3 postes de livraisons seront nécessaires pour évacuer l'électricité produite.

La localisation exacte des emplacements des postes de livraison est fonction de la proximité du réseau inter-éolien et de la localisation du poste source vers lequel l'électricité est ensuite acheminée.

Les références cadastrales des postes de livraison du parc éolien de LUCE sont les suivantes :

Tableau 11 : Références cadastrales des postes de livraison

Installation	Parcelle	Lieu-dit	Commune
PDL1	Section ZD, n°18	Vallée du Bois de Gressy	Cayeux en Santerre
PDL2*	Section ZN, n°9	Vallée des Cauchy	Caix
PDL3*	Section ZN, n°9	Vallée des Cauchy	Caix

^{*} Les PDL2 et PDL3 seront implantés sur la même parcelle et dos à dos.

Les plans de masses et plans de coupe des postes de livraison sont consultables dans le dossier urbanisme de la présente demande d'autorisation unique (sous-dossier n°6).

4.3.1.2 Réseau inter-éolien

Le réseau électrique inter-éolien (ou réseau électrique interne) permet d'acheminer l'électricité produite en sortie d'éolienne vers le poste de livraison électrique en 20 000 V.

Ce réseau sera constitué d'un jeu de câbles triphasés HTA en aluminium isolés par des gaines. Il comporte également une liaison de télécommunication qui relie chaque éolienne au terminal de télésurveillance. La télégestion du parc éolien sera ainsi assurée par le biais des fibres optiques.

Le réseau est constitué de 3 câbles normalisés (un par phase) d'une tension de 20 000 Volts.

Tableau 12 : Détail technique des conducteurs souterrains

Type de sâble	HTA: NFC 33226		
Type de câble	HTA: NFC 33220		
Nature de l'âme des conducteurs	ALUMINIUM		
	3 x 300 mm ²		
Nombre, disposition et section des	3 x 240 mm ²		
conducteurs	3 x 150 mm ²		
	3 x 95 mm²		
Nature des couches isolantes	Isolant Polyéthylène réticulé et Gaine Polyéthylène		
Caractéristique du câble	Caractéristique U.T.E NFC 33226		
Profondeur de pose du câble			
sous parcelles privées	1,10 m		
sous accotements chemin	1,10 m		
Tranchées	Coupe type		
Protection	Grillage avertisseur rouge à 30 cm au-dessus des câbles		
Caniveau pour câble unipolaire	Néant		

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Les tranchées réservées au câblage seront créées le long des voies d'accès et sur les parcelles cultivées. Tous les câbles liés à la communication et au système de surveillance emprunteront ces tranchées. Celles-ci seront recouvertes des matériaux préalablement enlevés pour les créer.

Le réseau interne est réalisé :

- de manière directe entre B1, B4, B3 et B2 au droit des parcelles privées agricoles d'implantation.
- entre E1, E2 et E3 en empruntant les parcelles agricoles d'implantation et en longeant la voie communale reliant Caix à Beaufort-en-Santerre.
- entre E4 et E5 au droit des parcelles privées agricoles d'implantation et en empruntant partiellement une partie d'un chemin rural existant.
- de manière directe entre E6, E7 et E8 au droit des parcelles privées agricoles d'implantation.

L'emplacement des réseaux électriques internes est reporté sur la

Figure 8 page 13.

Les parcelles cadastrales traversées par le réseau interne seront les suivantes.

Tableau 13 : Références des parcelles traversées par le réseau inter-éolien

Commune	Sections et parcelles cadastrales
	ZO n°6, 10, 11, 12, 13
Caix	ZN n°2, 3, 4, 7, 9
	ZM n°10, 14, 15
Vrély	ZK n°1, 2, 3
Viciy	ZI n°6, 7, 9
Cayeux-en-Santerre	ZB n°31 et ZD n°18

4.3.1.3 Réseau électrique externe

Le réseau électrique externe relie les postes de livraison avec le poste source (réseau public de transport d'électricité). Il est lui aussi entièrement enterré.

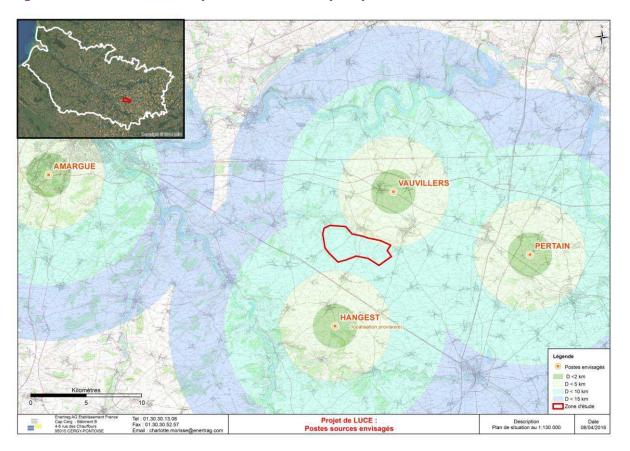
Le réseau externe est réalisé sous maîtrise d'ouvrage du gestionnaire de réseau de transport d'électricité.

La définition du poste, du mode et du tracé du raccordement au réseau public, ainsi que sa réalisation même, sont de la compétence du gestionnaire dudit réseau (généralement ERDF-Électricité Réseau Distribution France).

Règles de définition des conditions de raccordement.

Les conditions de raccordement aux réseaux publics d'électricité des installations de production d'électricité à partir de sources d'énergies renouvelables, d'une puissance installée supérieure à 36 kilovoltampères, sont fixées par le décret n°2012-533 du 20 avril 2012. L'article 14 de ce décret indique que les gestionnaires de réseaux publics proposent la solution de raccordement sur le poste le plus proche disposant d'une capacité réservée, en application de l'article 12, suffisante pour satisfaire la puissance de raccordement demandée.

Une demande à ERDF a été faite en ce sens. La proposition de raccordement définitive (poste source et tracé de raccordement) sera produite par ERDF après l'obtention de l'autorisation de construire le parc éolien, à la recherche du meilleur parti économique, conformément à la réglementation en vigueur. Le gestionnaire gère les éventuels accords fonciers nécessaires.


En effet, le raccordement du parc éolien au réseau public est une opération menée par le gestionnaire de réseau (ERDF/RTE/SICAE) qui en est le maître d'ouvrage et non ENERTRAG SANTERRE IV. Le câble souterrain qui relie le projet au poste source est la propriété du gestionnaire de réseau. C'est donc le gestionnaire de réseau qui choisit le tracé du raccordement selon des caractéristiques techniques et économiques qui lui sont propres.

Actuellement, la capacité des postes sources autour de la zone d'étude est nulle. Une révision du schéma de raccordement électrique est en cours afin de résoudre ces contraintes de raccordement.

Le contexte local présente quatre postes sources situés à moins de 25 km du site de Luce ; il s'agit des postes suivants, localisés sur la figure suivante : Vauvillers, Hangest, Pertain et

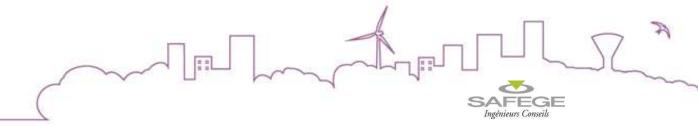

Amargue. Les six éoliennes du parc actuel de CAIX sont raccordées au poste source de Vauvillers.

Figure 11 : Localisation des postes sources les plus proches

4.3.2 AUTRES RESEAUX

Les zones retenues pour l'implantation des éoliennes proprement-dites du parc de LUCE ne comportent aucun réseau d'alimentation en eau potable (AEP) ni aucun réseau d'assainissement.

5. IDENTIFICATION DES POTENTIELS DE DANGERS

Ce chapitre de l'étude de dangers a pour objectif de mettre en évidence les éléments de l'installation pouvant constituer un danger potentiel, que ce soit au niveau des éléments constitutifs des éoliennes, des produits contenus dans l'installation, des modes de fonctionnement, etc.

L'ensemble des causes externes à l'installation pouvant entraîner un phénomène dangereux, qu'elles soient de nature environnementale, humaine ou matérielle, seront traitées dans l'analyse de risques.

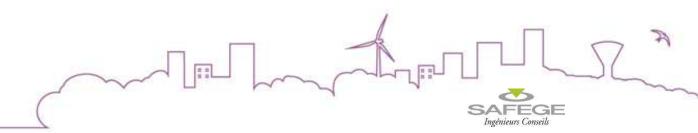
5.1 POTENTIELS DE DANGERS LIES AUX PRODUITS

L'activité de production d'électricité par les éoliennes ne consomme pas de matières premières, ni de produits pendant la phase d'exploitation. De même, cette activité ne génère pas de déchet, ni d'émission atmosphérique, ni d'effluent potentiellement dangereux pour l'environnement.

Les produits identifiés dans le cadre du projet de parc éolien de Luce sont utilisés pour le bon fonctionnement des éoliennes, leur maintenance et leur entretien :

- Produits nécessaires au bon fonctionnement des installations (graisses et huiles de transmission, huiles hydrauliques pour systèmes de freinage...), qui une fois usagés sont traités en tant que déchets industriels spéciaux;
- Produits de nettoyage et d'entretien des installations (solvants, dégraissants, nettoyants...)
 et les déchets industriels banals associés (pièces usagées non souillées, cartons d'emballage...)

Conformément à l'article 16 de l'arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation, aucun produit inflammable ou combustible n'est stocké dans les aérogénérateurs ou le poste de livraison.


5.1.1 LES PRODUITS ENTRANTS

Les seuls produits présent en phase d'exploitation sont recensés dans le tableau suivant :

Tableau 14 : Potentiels de dangers liés aux produits

Produit présent sur le site	Propriété physique	Catégorie de risque	Toxicité	Potentiels de dangers
Huiles	Huiles pour graissage nécessaire au fonctionnement des multiplicateurs : lubrifiants de synthèse avec additifs. Liquide de couleur ambre Densité = 0,86 Point d'ébullition > 316°C Point éclair = 205°C Tension de vapeur < 0,013 kPa à 20°C	-	Ce produit n'est pas classé dangereux au sens des directives 1999/45/CE ou 67/548/CEE. Toutefois, une exposition excessive peut conduire à une irritation des voies respiratoires, des yeux ou de la peau.	Produits liquides non inflammables. Produits combustibles qui sous l'effet d'une flamme ou d'un point chaud intense peuvent développer et entretenir un incendie. En cas de déversement, peut générer un risque de pollution des sols ou des eaux.
Graisses	Graisses servant à la lubrification des différents engrenages : graisses synthétiques multiservice avec lubrifiants et additifs. Densité = entre 0,8 et 0,9 Viscosité à 40°C = 460 mm²/s Viscosité à 100°C = 42 mm²/s	-	Ce produit n'est pas classé dangereux au sens des directives 1999/45/CE ou 67/548/CEE.	Les graisses sont des produits non inflammables. Néanmoins, ce sont des produits combustibles qui sous l'effet d'une flamme ou d'un point chaud intense peuvent développer et entretenir un incendie. En cas de déversement, peut générer un risque de pollution des sols ou des eaux.
Eau glycolée	Mélange d'eau et d'éthylène glycol utilisé comme liquide de refroidissement. Liquide visqueux incolore, sans odeur, avec un goût sucré. Point d'ébullition = 198°C Point éclair = 111°C Pression de vapeur saturante = 7 Pa	Xn = nocif R22 : nocif en cas d'ingestion	Nocif en cas d'ingestion	Peu inflammable à l'état liquide. L'éthylène glycol peut se montrer explosif à l'état gazeux.
Hexafluorure de soufre SF6	Le SF6 est un gaz utilisé comme milieu isolant pour les cellules de protection électrique. Gaz incolore, inodore, plus lourd que l'air et pratiquement insoluble dans l'eau. D = 5,11 Tension de vapeur = 2308 kPa à 21°C	-	Vis à vis de l'environnement, le SF6 possède un potentiel de réchauffement global (gaz à effet de serre) très important. Risque d'asphyxie à haute concentration	Produit ininflammable et inexplosible.

Pour remarque, d'autres produits peuvent être utilisés lors des phases de maintenance (lubrifiants, décapants, colles, peinture, produits de nettoyage) mais toujours en faibles quantités (quelques litres au plus).

5.1.2 LES PRODUITS SORTANTS

Les produits sortants correspondent à l'ensemble des produits utilisés et évacués lors des opérations de maintenance sur l'éolienne. Par conséquent, ce sont les mêmes produits que les produits entrants, mais sous formes d'excédents ou de déchets (huiles usagées...).

De ce fait, les potentiels de dangers liés aux produits sortants sont les mêmes que ceux des produits entrants, notamment le caractère combustible des huiles et graisses contenues dans l'éolienne, qui peuvent être impliqués dans les incendies d'éoliennes.

En remarque, pour quelque opération de maintenance que ce soit :

- Les excédents sont systématiquement remportés par les équipes en fin de journée (que la maintenance soit terminée ou non) afin d'être stockés dans les centres de façon appropriée en vue de leur élimination selon la réglementation ;
- Les pièces défectueuses remplacées sont également remportées par les équipes afin d'être stockées dans les centres de façon appropriée en vue de leur élimination selon la réglementation;
- Les déchets dangereux (chiffons souillés, contenants vides...) générés lors des maintenances sont systématiquement remportés par les équipes en fin de journée afin d'être stockés dans les centres de façon appropriée en vue de leur élimination selon la réglementation.

Par ailleurs, un nettoyage minutieux de la machine est opéré après chaque maintenance afin de s'assurer qu'aucun produit/déchet ne reste dans la machine lors du départ des équipes.

Il est à noter que l'huile, notamment celle du multiplicateur, est remplacée régulièrement (tous les 3/4 ans ou après une analyse d'huile). L'huile usagée est récupérée par un véhicule de pompage spécialisé directement dans le multiplicateur. L'huile neuve est injectée de la même manière.

L'huile récupérée est ensuite transportée :

- soit directement en centre de traitement de filtrage / retraitement / élimination agréés au regard de la réglementation applicable,
- soit directement dans le centre de maintenance en vue de sa prise en charge et de son filtrage / retraitement / élimination selon des filières agréées au regard de la réglementation applicable.

5.2 POTENTIELS DE DANGERS LIES AU FONCTIONNEMENT DE L'INSTALLATION

Les dangers liés au fonctionnement du parc éolien de LUCE sont de cinq types :

- Chute d'éléments de l'aérogénérateur (boulons, morceaux d'équipements, etc.),
- Projection d'éléments (morceaux de pale, brides de fixation, etc.),
- Effondrement de tout ou partie de l'aérogénérateur,
- Échauffement de pièces mécaniques,
- Court-circuits électriques (aérogénérateur ou poste de livraison).

Ces dangers potentiels sont recensés dans le tableau suivant :

Tableau 15 : Potentiels de dangers liés aux installations

Installation ou système	Fonction	Phénomène redouté	Danger potentiel
Système de transmission d'énergie mécanique		Survitesse	Échauffement des pièces mécaniques et flux thermique
Pale	Prise au vent	Bris de pale ou chute de pale	Énergie cinétique d'éléments de pales
raie	rrise du vent	Projection ou chute de glace	Énergie cinétique du morceau de glace
Aérogénérateur	Production d'énergie Aérogénérateur électrique à partir d'énergie éolienne		Énergie cinétique de chute
Poste de livraison, intérieur de l'aérogénérateur	Réseau électrique	Court-circuit interne	Arc électrique
Nacelle	Protection des équipements destinés à la Production électrique	Chute d'éléments	Énergie cinétique de projection
Nacelle	Protection des équipements destinés à la Production électrique	Chute de nacelle	Énergie cinétique de chute
Rotor	Transformer l'énergie éolienne en énergie mécanique	Projection d'objets	Énergie cinétique des objets

5.3 REDUCTION DES POTENTIELS DE DANGERS A LA SOURCE

5.3.1 PRINCIPALES ACTIONS PREVENTIVES

Cette partie explique les choix qui ont été effectués au cours de la conception du projet pour réduire les potentiels de danger identifiés et garantir une sécurité optimale de l'installation.

Choix de l'emplacement

Le projet concerne la création d'un parc éolien avec 12 aérogénérateurs. Il se trouve sur des parcelles agricoles situées sur les communes de Caix, Cayeux-en-Santerre et Vrély, dans un paysage de plateau agricole ouvert. Les parcelles sont de grandes tailles, de type openfield dans leur grande majorité.

Le choix de cet emplacement a été réalisé sur la base de différentes contraintes liées à l'exploitation du site :

- Éloignement par rapport aux habitations, infrastructures et ressources naturelles,
- Servitudes techniques,
- Etudes écologiques et paysagères.

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Les différentes étapes du choix du site ainsi que les variantes étudiées sont détaillées dans l'étude d'impact placée dans le Sous-Dossier n°4.

Les 12 éoliennes seront raccordées à 3 postes de livraison placés au nord-ouest et sur la partie est du parc ; ils seront eux-mêmes raccordés au réseau électrique public existant.

Choix des caractéristiques des éoliennes

Compte tenu des caractéristiques du site (potentiel éolien, résultats des simulations d'impact acoustique ...) et parmi les modèles proposés par les constructeurs de machines existants, les machines qui seront mise en place seront de type N117-3MW de marque NORDEX, de puissance unitaire égale à 3 MW.

5.3.2 UTILISATION DES MEILLEURES TECHNIQUES DISPONIBLES – DIRECTIVE IED

La directive 2010/75/UE du 24 novembre 2012 relative aux émissions industrielles, dite directive IED, correspond à une évolution de la directive relative à la prévention et à la réduction intégrée de la pollution (IPPC). La date de transposition a été fixée au 7 janvier 2013, date à partir de laquelle ses dispositions rentrent en application.

Les dispositions générales de la directive ont été transposées dans le droit français, et en particulier dans le code de l'environnement, section 8, à travers le décret n°2013-374 du 2 mai 2013.

Ainsi, les installations IED qui établissent une demande d'autorisation d'exploiter doivent apporter des compléments dans l'étude d'impact portant sur les Meilleures Techniques Disponibles (MTD), et en particulier,

- 1. Une comparaison du fonctionnement (et en particulier le positionnement des niveaux de rejets) de l'installation avec les MTD décrites dans les conclusions sur les MTD lorsqu'elles sont disponibles.
- 2. Une évaluation technico-économique (coût / bénéfice pour l'environnement) relative à une éventuelle demande de dérogation aux respects des Valeurs Limites d'Émission associées aux MTD.
- 3. Un rapport de base lorsque l'activité implique l'utilisation, la production ou le rejet de substances ou de mélanges dangereux pertinents classés CLP.

Les installations éoliennes, ne consomment pas de matières premières et ne sont pas à l'origine d'émissions dans l'air ou dans l'eau. Elles ne relèvent pas d'une des rubriques de 3000 à 3710, elles ne sont donc pas soumises à la directive IED

6. ANALYSE DES RETOURS D'EXPÉRIENCE

Il n'existe actuellement aucune base de données officielle recensant l'accidentologie dans la filière éolienne. Néanmoins, il a été possible d'analyser les informations collectées en France et dans le monde par plusieurs organismes divers (associations, organisations professionnelles, littérature spécialisées, etc.). Ces bases de données sont cependant très différentes tant en termes de structuration des données qu'en termes de détail de l'information.

L'analyse des retours d'expérience vise donc ici à faire émerger des typologies d'accident rencontrés tant au niveau national qu'international. Ces typologies apportent un éclairage sur les scénarios les plus rencontrés. D'autres informations sont également utilisées dans le chapitre 8 pour l'analyse détaillée des risques.

6.1 INVENTAIRES DES ACCIDENTS ET INCIDENTS EN FRANCE

Un inventaire des incidents et accidents en France a été réalisé afin d'identifier les principaux phénomènes dangereux potentiels pouvant affecter l'implantation du parc éolien de LUCE. Cet inventaire se base sur le retour d'expérience de la filière éolienne tel que présenté dans le guide technique de conduite de l'étude de dangers (mars 2012).

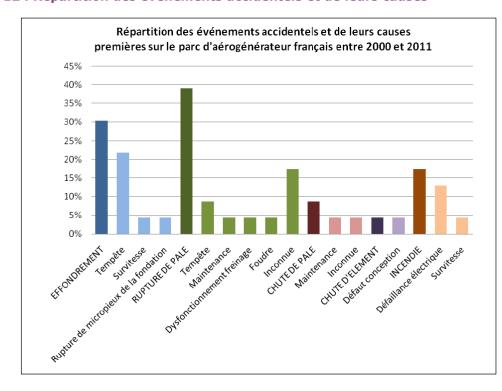
Plusieurs sources ont été utilisées pour effectuer le recensement des accidents et incidents au niveau français. Il s'agit à la fois de sources officielles, d'articles de presse locale ou de bases de données mises en place par des associations :

- Rapport du Conseil Général des Mines (juillet 2004),
- Base de données ARIA du Ministère du Développement Durable,
- Communiqués de presse du SER-FEE et/ou des exploitants éoliens,
- Site Internet de l'association « Vent de Colère »,
- Site Internet de l'association « Fédération Environnement Durable »,
- Articles de presse divers,
- Données diverses fournies par les exploitants de parcs éoliens en France.

Dans le cadre de ce recensement, il n'a pas été réalisé d'enquête exhaustive directe auprès des exploitants de parcs éoliens français. Cette démarche pourrait augmenter le nombre d'incidents recensés, mais cela concernerait essentiellement les incidents les moins graves.

Dans l'état actuel, la base de données élaborée par le groupe de travail de SER/FEE ayant élaboré le guide technique d'élaboration de l'étude de dangers dans le cadre des parcs éoliens apparaît comme représentative des incidents majeurs ayant affecté le parc éolien français depuis l'année 2000. L'ensemble de ces sources permet d'arriver à un inventaire aussi complet que possible des incidents survenus en France. Un total de 37 incidents a pu être recensé entre 2000 et début 2012 (voir tableau détaillé en annexe 1). Ce tableau de travail a été validé par les membres du groupe de travail précédemment mentionné.

Il apparaît dans ce recensement que les aérogénérateurs accidentés sont principalement des modèles anciens ne bénéficiant généralement pas des dernières avancées technologiques.



Le graphique suivant montre la répartition des événements accidentels et de leurs causes premières sur le parc d'aérogénérateur français entre 2000 et 2011. Cette synthèse exclut les accidents du travail (maintenance, chantier de construction, etc.) et les événements qui n'ont pas conduit à des effets sur les zones autour des aérogénérateurs. Dans ce graphique sont présentés :

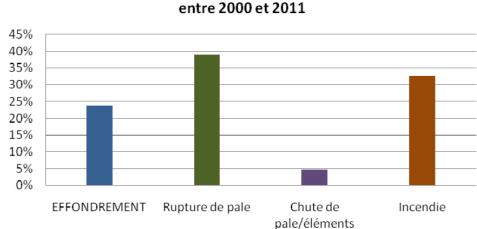
- La répartition des événements effondrement, rupture de pale, chute de pale, chute d'éléments et incendie, par rapport à la totalité des accidents observés en France. Elles sont représentées par des histogrammes de couleur foncée ;
- La répartition des causes premières pour chacun des événements décrits ci-dessus. Celleci est donnée par rapport à la totalité des accidents observés en France. Elles sont représentées par des histogrammes de couleur claire.

Figure 12 : Répartition des événements accidentels et de leurs causes

Par ordre d'importance, les accidents les plus recensés sont les ruptures de pale, les effondrements, les incendies, les chutes de pale et les chutes des autres éléments de l'éolienne. La principale cause de ces accidents est les tempêtes.

Depuis le dernier recensement donné dans le guide technique d'élaboration de l'étude de dangers dans le cadre des parcs éoliens (INERIS-Syndicat des énergies renouvelables-France Energie Eolienne – mai 2012), un accident est survenu sur un parc éolien en France en mai 2012 (interrogation du BARPI sur la période mars 2012-mars 2013) dans le département de l'Eure-et-Loir.

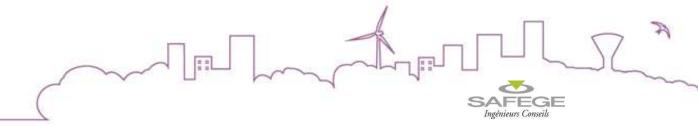
Il s'agit d'une chute de pale due à la corrosion au niveau du roulement reliant pale et hub. Cet accident n'a été à l'origine d'aucune conséquence humaine.


6.2 INVENTAIRE DES ACCIDENTS ET INCIDENTS A L'INTERNATIONAL

Un inventaire des incidents et accidents à l'international a également été réalisé. Il se base lui aussi sur le retour d'expérience de la filière éolienne fin 2010.

La synthèse ci-dessous provient de l'analyse de la base de données réalisée par l'association Caithness Wind Information Forum (CWIF). Sur les 994 accidents décrits dans la base de données au moment de sa consultation par le groupe de travail précédemment mentionné, seuls 236 sont considérés comme des « accidents majeurs ». Les autres concernant plutôt des accidents du travail, des presque-accidents, des incidents, etc. et ne sont donc pas pris en compte dans l'analyse suivante.

Le graphique suivant montre la répartition des événements accidentels par rapport à la totalité des accidents analysés.


Figure 13 : Répartition des événements accidentels et de leurs causes

Répartition des événements accidentels dans le monde

Ci-après, est présenté le recensement des causes premières pour chacun des événements accidentels recensés (données en répartition par rapport à la totalité des accidents analysés).

Tout comme pour le retour d'expérience français, ce retour d'expérience montre l'importance des causes « tempêtes et vents forts » dans les accidents. Il souligne également le rôle de la foudre dans les accidents.

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Figure 14 : Répartition des causes premières d'effondrement

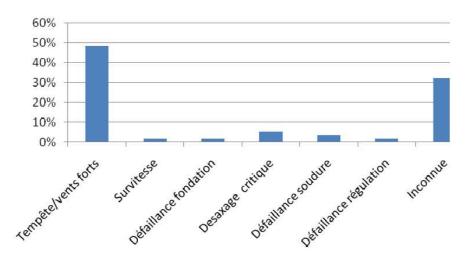


Figure 15 : Répartition des causes premières de rupture de pale

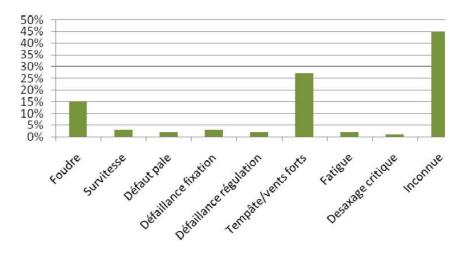
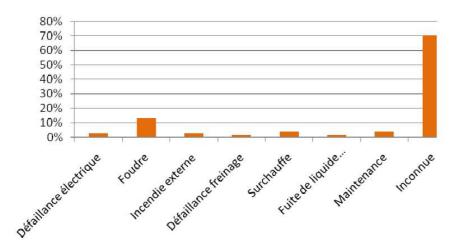
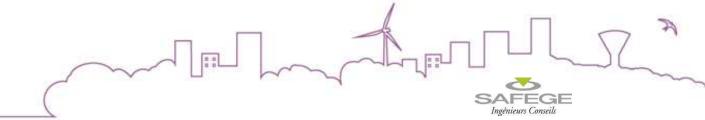



Figure 16 : Répartition des causes premières d'incendie


6.3 INVENTAIRE DES ACCIDENTS MAJEURS SURVENUS SUR LES SITES DE L'EXPLOITANT

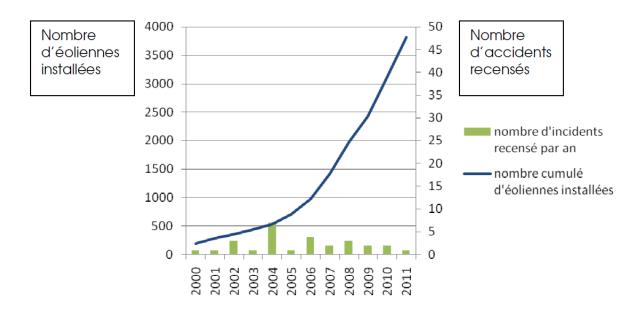
L'inventaire des accidents majeurs survenus sur les sites de l'exploitant est à réaliser uniquement en cas d'extension d'une installation existante ou de révision de l'étude de dangers.

Sur les 40 accidents recensés en France, aucun incident sur les installations similaires exploitées par la société ENERTRAG en France n'est à constater.

En Allemagne, à Storkow, dans le Sud de l'Uckermark un incident est survenu le 28 Septembre 2015 sur une éolienne exploitée par ENERTRAG. Lors d'un contrôle de maintenance le montecharge a chuté, ce qui a eu pour conséquence la mort tragique d'un salarié et la blessure grave d'un second.

Après cet incident, des mesures préventives ont été mises en œuvre sur tous les parcs exploités par ENERTRAG en Europe. L'enquête est en cours.

6.5 SYNTHESE DES PHENOMENES DANGEREUX REDOUTES ISSUS DU RETOUR D'EXPERIENCE


6.5.1 ANALYSE DE L'EVOLUTION DES ACCIDENTS EN FRANCE

A partir de l'ensemble des phénomènes dangereux qui ont été recensés, il est possible d'étudier leur évolution en fonction du nombre d'éoliennes installées.

La figure ci-dessous montre cette évolution et il apparaît clairement que le nombre d'incidents n'augmente pas proportionnellement au nombre d'éoliennes installées. Depuis 2005, l'énergie éolienne s'est en effet fortement développée en France, mais le nombre d'incidents par an reste relativement constant.

Cette tendance s'explique principalement par un parc éolien français assez récent, qui utilise majoritairement des éoliennes de nouvelle génération, équipées de technologies plus fiables et plus sûres.

Figure 17 : Évolution du nombre d'incidents annuels en France et nombre d'éoliennes installées

6.5.2 ANALYSE DES TYPOLOGIES D'ACCIDENTS LES PLUS FREQUENTS

Le retour d'expérience de la filière éolienne française et internationale permet d'identifier les principaux événements redoutés suivants :

- Effondrements
- Ruptures de pales

- Chutes de pales et d'éléments de l'éolienne
- Incendie

Les conséquences de tels sinistres sont diverses :

- Émissions de fumées provoquant de légères intoxications/gênes (cas d'un incendie de nacelle),
- Arrêt de la circulation routière dans le voisinage,
- Dégâts matériels importants,
- Blessures ou brûlures corporelles.

6.5.3 ENSEIGNEMENTS TIRES

Les mesures de réduction du risque, des sinistres issus de l'accidentologie sur des parcs éoliens, à mettre en place sont présentées de manière synthétique dans le tableau suivant.

Tableau 16: Mesures compensatoires

Événements	Mesures pour réduire le risque sur l'unité
Survitesse de la turbine	Capteur de vitesse de vent alarmé avec arrêt par le système de conduite pour des vents supérieurs à 25 m/s (mise en drapeau de la turbine) Arrêt sur survitesse du rotor par le système de sécurité (VOG)
Effondrement	Étude préalable de sol Calcul des fondations selon les normes en vigueur Contrôle des calculs et des travaux
Incendie	Capteurs de température avec alarmes et mise à l'arrêt du rotor Alarme des niveaux et pressions sur les circuits hydrauliques Vérification périodique des organes de sécurité Détecteurs de fumées dans la nacelle et au pied de la tour à proximité des armoires électriques Protection foudre Détecteur d'arc électrique dans les armoires électriques avec mise hors tension des machines.
Rupture de pale	Choix des matériaux adaptés aux contraintes Essais de résistance et de fatigue sur séries prototypes avec validation par une société de contrôle - Contrôles lors de la fabrication Protection foudre Détecteur de vent fort
Formation de glace	Système de monitoring avec code spécifique d'arrêt de l'installation en cas de corrélation de plusieurs facteurs susceptibles d'être à l'origine de la formation de glace (détecteur de température, de balourd et instruments météorologiques.
Collision	Luminaire d'aviation sur chaque turbine

7. ANALYSE PRÉLIMINAIRE DES RISQUES

L'analyse des risques a pour objectif principal d'identifier les scénarios d'accident majeurs et les mesures de sécurité qui empêchent ces scénarios de se produire ou en limitent les effets. Cet objectif est atteint au moyen d'une identification de tous les scénarios d'accident potentiels pour une installation (ainsi que des mesures de sécurité) basé sur un questionnement systématique des causes et conséquences possibles des événements accidentels, ainsi que sur le retour d'expérience disponible.

Les scénarios d'accident sont ensuite hiérarchisés en fonction de leur intensité et de l'étendue possible de leurs conséquences. Cette hiérarchisation permet de « filtrer » les scénarios d'accident qui présentent des conséquences limitées et les scénarios d'accidents majeurs – ces derniers pouvant avoir des conséquences sur les personnes.

7.1 RECENSEMENT DES EVENEMENTS INITIATEURS EXCLUS DE L'ANALYSE DES RISQUES

Conformément à la circulaire du 10 mai 2010, les événements initiateurs (ou agressions externes) suivants peuvent être exclus de l'analyse des risques :

- Chute de météorite,
- Chute d'avion, la zone du projet se situant à plus de 2000 m de distance d'un aéroport ou aérodrome,
- Rupture de barrage de classe A ou B au sens de l'article R. 214-112 du code de l'environnement ou d'une digue de classe A, B ou C au sens de l'article R. 214-113 de ce même code,
- Événements climatiques d'intensité supérieure aux événements historiquement connus ou prévisibles pouvant affecter l'installation, selon les règles en vigueur,
- Crues d'amplitude supérieure à la crue de référence, selon les règles en vigueur,
- Séisme d'amplitude supérieure aux séismes maximums de référence éventuellement corrigés de facteurs, tels que définis par la réglementation applicable aux installations classées considérées,
- Actes de malveillance.

D'autre part, plusieurs autres agressions externes qui ont été détaillées dans l'état initial peuvent être exclues de l'analyse préliminaire des risques car les conséquences propres de ces événements, en termes de gravité et d'intensité, sont largement supérieures aux conséquences potentielles de l'accident qu'ils pourraient entraîner sur les aérogénérateurs.

Le risque de sur-accident lié à l'éolienne est considéré comme négligeable dans le cas des événements suivants :

- Inondations,
- Séismes d'amplitude suffisante pour avoir des conséquences notables sur les infrastructures,
- Incendies de cultures ou de forêts,

- Pertes de confinement de canalisations de transport de matières dangereuses,
- Explosions ou incendies générés par un accident sur une activité voisine de l'éolienne.

7.2 RECENSEMENT DES AGRESSIONS EXTERNES POTENTIELLES

7.2.1 AGRESSIONS EXTERNES LIEES AUX ACTIVITES HUMAINES

Le tableau ci-dessous synthétise les principales agressions externes liées aux activités humaines et leur éloignement par rapport aux éoliennes. Il est à noter que les activités humaines recensées en dehors du périmètre mentionné dans le tableau ne sont plus considérées comme étant un agresseur potentiel.

Infrastructure	Fonction	Événement redouté	Danger potentiel	Périmètre	Distance par rapport au mât des éoliennes
RD76					285 m / éolienne B1 > 500m / autres éoliennes
RD28	Transport	Accident entraînant la sortie de voie d'un ou plusieurs	Énergie cinétique des véhicules et	200 m	256 m / éolienne B4 > 500m / autres éoliennes
RD41		véhicules	flux thermiques		277 m / éolienne E1 448 m / éolienne E2 386 m / éolienne E3 > 500m / autres éoliennes
Voie ferrée Amiens / Laon	Transport ferroviaire	Accident entraînant la sortie de voie d'un ou plusieurs wagons	Énergie cinétique des wagons et flux thermiques	200 m	> 2 km
Aérodrome	Transport aérien	Chute d'aéronef	Énergie cinétique de l'aéronef, flux thermiques	2 000 m	> 13 km
Ligne HTA 63 kV	Transport d'électricité	Rupture de câble	Arc électrique, surtension	200 m	153 m / éolienne E1 198 m / éolienne E7 > 200m / autres éoliennes
Installations ICPE (hors parcs éoliens traités ci- dessous)	Activité industrielle	Accident générant des zones d'effet à l'extérieur du site	Effets dominos	200 m	> 1 km
Parc éolien existant de Caix*	Production d'électricité	Accident générant des projections d'éléments	Énergie cinétique des éléments projetés	500 m	Eolienne C2 (Caix) à 430 m de B1 (Luce) Eolienne C3 à 560 m de B1 Autres éoliennes > 20 km

^{*} On rappelle que le projet vise l'extension du parc actuel de Caix ; ce qui implique une nécessaire proximité des installations composant les deux parcs.

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Remarque:

Au regard de la synthèse réalisée et des distances d'éloignement, aucun événement redouté de type « accident entraînant la sortie de voie d'un ou plusieurs véhicules lié aux voies départementales traversant la zone du projet n'est susceptible de toucher les éoliennes projetées (d > 200 m).

L'événement redouté : « Rupture de câble » lié à la présence des lignes électriques HTA 63 kV « Roye-Vauvillers 1 et 2 », est susceptible de toucher les éoliennes E1 et E7.

7.2.2 AGRESSIONS EXTERNES LIEES AUX PHENOMENES NATURELS

Le tableau ci-dessous synthétise les principales agressions externes liées aux phénomènes naturels.

Tableau 17 : Synthèse des principales agressions externes liées aux phénomènes naturels

Agression externe	Intensité
Vents et tempête	La zone prévue pour l'implantation des éoliennes est moyennement ventée (entre 5,5 et 6,5 m/s en moyenne, mesurées à 50 m d'altitude) ; les vents d'une intensité supérieurs à 8 m/s ne représentent qu'une part réduite (moins de 10%) des vents mesurés dans le secteur. L'emplacement des éoliennes de Luce ne se situe pas dans une zone affectée par des cyclones tropicaux.
Foudre	Les aérogénérateurs respecteront les dispositions de la norme IEC 61 400-24.
Glissement de sols / affaissement minier	Il n'y a pas de PPRN dans la zone d'étude.
Séisme	Le secteur d'étude est situé en zone 1 définie comme une « zone de sismicité très faible ».
Inondation/remontée de nappe	La zone prévue pour le projet n'est pas considérée comme une zone sensible aux inondations. Le secteur d'étude n'est pas concerné par le risque de remontée de nappe.
Incendies de forêt	Le voisinage proche des éoliennes est constitué de terrains agricoles, il n'y a donc pas de forêts proches

Le cas spécifique des effets directs de la foudre et du risque de « tension de pas » n'est pas traité dans l'analyse des risques et dans l'étude détaillée des risques dès lors qu'il est vérifié que la norme IEC 61 400-24 (Juin 2010) ou la norme EN 62 305-3 (Décembre 2006) est respectée. Ces conditions sont reprises dans la fonction de sécurité n°6 ci-après.

En ce qui concerne la foudre, on considère que le respect des normes rend le risque d'effet direct de la foudre négligeable (risque électrique, risque d'incendie, etc.). En effet, le système de mise à la terre permet d'évacuer l'intégralité du courant de foudre. Cependant, les conséquences indirectes de la foudre, comme la possible fragilisation progressive de la pale, sont prises en compte dans les scénarios de rupture de pale.

7.3 SCENARIOS ETUDIES DANS L'ANALYSE PRELIMINAIRE DES RISQUES

7.3.1 METHODOLOGIE

L'analyse préliminaire des risques (APR) est une analyse exhaustive de l'installation, découpée en sous-ensembles de fonctionnement. Elle est présentée sous la forme d'un tableau construit de la manière suivante :

- Une description des causes et de leur séquençage (événements initiateurs et événements intermédiaires);
- Une description des événements redoutés centraux qui marquent la partie incontrôlée de la séquence d'accident;
- Une description des fonctions de sécurité permettant de prévenir l'événement redouté central ou de limiter les effets du phénomène dangereux;
- Une description des phénomènes dangereux dont les effets sur les personnes sont à l'origine d'un accident;
- Une évaluation préliminaire de la zone d'effets attendue de ces événements.

Tableau 18 : Entête tableau APR

N°	Évènement initiateur	Évènement redouté central	Phénomène dangereux	I (Intensité)	Mesures de prévention / de protection
----	-------------------------	------------------------------	------------------------	---------------	---------------------------------------


L'échelle utilisée pour l'évaluation de l'intensité des événements a été adaptée au cas des éoliennes :

- « 1 » correspond à un phénomène limité ou se cantonnant au surplomb de l'éolienne ;
- « 2 » correspond à une intensité plus importante et impactant potentiellement des personnes autour de l'éolienne.

7.3.2 TABLEAUX DE RESULTATS

L'analyse préliminaire a été réalisée en fonction du découpage fonctionnel défini précédemment :

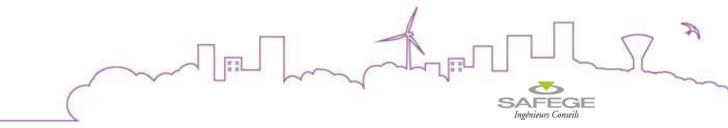
- Les fondations,
- Le mât,
- Le rotor et les pales,
- La nacelle (contenant la chaîne cinématique et la génératrice),
- Le poste de transformation (ou système de couplage vers le réseau électrique comprenant le transformateur ainsi que les cellules de protection).

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Tableau 19 : Analyse préliminaire des risques

Ν°	Événement initiateur	Événement redouté	Phénomène dangereux	I	Mesures de prévention et de protection
Fond	ation				
1	Erreurs humaines défaut de conception erreur de calcul des fondations	Instabilité / fragilisation des fondations	Effondrement de l'éolienne	2	Fonction de sécurité n°9 Prévenir les défauts de stabilité et d'assemblage de l'éolienne (construction – exploitation)
	Effets dominos d'autres installations				
2	Phénomènes naturels vents forts tempête	Instabilité / fragilisation des fondations	Effondrement de l'éolienne	2	Fonction de sécurité n°9 Prévenir les défauts de stabilité et d'assemblage de l'éolienne (construction – exploitation) Fonction de sécurité n° 11 Prévenir les risques de dégradation de l'éolienne en cas de vent fort
3	Phénomènes naturels présence de cavités souterraines, mouvement de terrain, séisme glissement de sol	Instabilité / fragilisation des fondations Instabilité du terrain	Effondrement de l'éolienne	2	Fonction de sécurité n°9 Prévenir les défauts de stabilité et d'assemblage de l'éolienne (construction – exploitation)
Mât					
4	Défaillances matérielles défaut de conception, usure, pièce défectueuse, désaxage critique du rotor fatigue du mât survitesse effondrement engins de levage travaux,	Instabilité / Fragilisation du mât / Impact pale-mât	Effondrement de tout ou partie de l'éolienne	2	Fonction de sécurité n°4 Prévenir la survitesse Fonction de sécurité n°9 Prévenir les défauts de stabilité et d'assemblage de l'éolienne (construction – exploitation)
5	Phénomènes naturels vents forts tempête	Instabilité / fragilisation du mât	Effondrement de tout ou partie de l'éolienne	2	Fonction de sécurité n°11 Prévenir les risques de dégradation de l'éolienne en cas de vent fort
Pales	5/Rotor				
6	- Phénomènes naturels	Casse de certaines pièces	Chute de tout ou partie de pales	1	Fonction de sécurité n°4 Prévenir la survitesse
7	vents forts tempête	Survitesse Contraintes trop importantes sur les pales	Projection de tout ou partie de pales	2	Fonction de sécurité n°11 Prévenir les risques de dégradation de l'éolienne en cas de vent fort
8	Phénomènes naturels	Fragilisation des pales	Chute de tout ou partie de pales	1	Fonction de sécurité n°6 Prévenir les effets de la foudre
9	Foudre	Tragilisation des pales	Projection de tout ou partie de pales	2	
10	Défaillances matérielles défaut de conception fatigue, usure, corrosion pièce défectueuse	Rupture / casse des pales	Chute de tout ou partie de pales	1	Fonction de sécurité n°9 Prévenir les défauts de stabilité et d'assemblage de l'éolienne (construction – exploitation)
11	Erreurs humaines erreur de maintenance/desserrage serrage inapproprié	, ,	Projection de tout ou partie de pales	2	Fonction de sécurité n°10 Prévenir les erreurs de maintenance

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»



N°	Événement initiateur	Événement redouté	Phénomène dangereux	I	Mesures de prévention et de protection
	Phénomènes naturels				
12	Neige Givre Glace Éolienne à l'arrêt	Formation/accumulation de neige ou de glace sur les pales	Chute de neige ou de glace au pied de la machine	1	Fonction de sécurité n°1 Prévenir la mise en mouvement de l'éolienne lors de la formation de glace
13	Phénomènes naturels Neige Givre Glace Éolienne en fonctionnement	Formation de glace sur les pales	Projection de glace	2	Fonction de sécurité n°2 Prévenir l'atteinte des personnes par la chute de glace
Nace	lle				
14	Défaillances matérielles défaut de conception défaut fixation nacelle/pivot central/mât défaillance fixation anémomètre usure pièce corrosion Erreurs humaines erreur de maintenance/défaut de fixation	Casse et/ou détachement de certaines pièces	Chute d'élément de l'éolienne (trappe, anémomètre, nacelle entière)	1	Fonction de sécurité n°9 Prévenir les défauts de stabilité et d'assemblage de l'éolienne (construction – exploitation) Fonction de sécurité n°10 Prévenir les erreurs de maintenance
15	serrage inapproprié	Casse de certaines pièces	Chute d'élément de l'éolienne (trappe, anémomètre, nacelle entière)	1	Fonction de sécurité n°11 Prévenir les risques de dégradation de l'éolienne en cas de vent fort
16	Phénomènes naturels vents forts tempête	Départ de feu suite à une survitesse	Incendie de tout ou partie de la nacelle Chute/projection d'éléments enflammés	1	Fonction de sécurité n°4 Prévenir la survitesse Fonction de sécurité n°7 Protection et intervention incendie
17	Phénomènes naturels fortes pluies, humidité foudre, gel rongeurs Défaillances matérielles Dysfonctionnement électrique	Départ de feu suite à un court-circuit	Incendie de tout ou partie de la nacelle Chute/projection d'éléments enflammés	1	Fonction de sécurité n°5 Prévenir les courts-circuits Fonction de sécurité n°7 Protection et intervention incendie
18	Défaillances matérielles défaut de conception, défaut de maintenance, désaxage de la génératrice, survitesse défaillance du multiplicateur, usure, corrosion pièce défectueuse, défaut de lubrification.	Départ de feu suite à échauffement des parties mécaniques	Incendie de tout ou partie de la nacelle Chute/projection d'éléments enflammés	1	Fonction de sécurité n°4 Prévenir la survitesse Fonction de sécurité n°3 Prévenir l'échauffement significatif de pièces mécaniques Fonction de sécurité n°7 Protection et intervention incendie Fonction de sécurité n°10 Prévenir les erreurs de maintenance
19	Défaillances matérielles défaillance d'un joint pièce défectueuse défaut de conception Erreurs humaines renversement de fluides lors d'opération de maintenance	Fuite système de lubrification Fuite convertisseur Fuite transformateur	- Épandage d'huile dans la nacelle et/ou hors de la nacelle - Pollution environnement : infiltration d'huile dans le sol	1	Fonction de sécurité n°8 Prévention et rétention des fuites système de rétention passif dans la nacelle

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

N°	Événement initiateur	Événement redouté	Phénomène dangereux	I	Mesures de prévention et de protection
20	Défaillances matérielles défaillance d'un joint pièce défectueuse défaut de conception Erreurs humaines renversement de fluides lors d'opération de maintenance + Présence d'une source d'ignition : échauffement mécanique, apport d'une source d'inflammation	Incendie de tout ou partie de l'installation	Incendie dans la nacelle Chute/projection d'éléments enflammés	1	Fonction de sécurité n°5 Prévenir les courts-circuits Fonction de sécurité n°7 Protection et intervention incendie Fonction de sécurité n°8 Prévention et rétention des fuites
Post	Poste de transformation				
21	Défaillance matérielle dysfonctionnement électrique	Départ de feu suite à un court-circuit	Incendie au poste de transformation	1	Fonction de sécurité n°5 Prévenir les courts-circuits Fonction de sécurité n°7 Protection et intervention incendie

7.4 EFFETS DOMINOS

Lors d'un accident majeur sur une éolienne, une possibilité est que les effets de cet accident endommagent d'autres installations. Ces dommages peuvent conduire à un autre accident. Par exemple, la projection de pale impactant les canalisations d'une usine à proximité peut conduire à des fuites de canalisations de substances dangereuses. Ce phénomène est appelé « effet domino ».

Les effets dominos susceptibles d'impacter les éoliennes sont décrits dans le tableau d'analyse des risques génériques présentés dans les pages précédentes.

En ce qui concerne les accidents sur des aérogénérateurs qui conduiraient à des effets dominos sur d'autres installations, le paragraphe 1.2.2 de la circulaire du 10 mai 2010 précise : « [...] seuls les effets dominos générés par les fragments sur des installations et équipements proches ont vocation à être pris en compte dans l'étude de dangers [...]. Pour les effets de projection à une distance plus lointaine, l'état des connaissances scientifiques ne permet pas de disposer de prédictions suffisamment précises et crédibles de la description des phénomènes pour déterminer l'action publique ».

Le guide technique de l'étude de dangers dans le cadre des parcs éoliens propose de limiter l'évaluation de la probabilité d'impact d'un élément de l'aérogénérateur sur une autre installation ICPE lorsque celle-ci se situe dans un rayon de 100 mètres.

Dans le cadre du projet, aucune autre installation ICPE n'est recensée dans un rayon de 100 mètres autour du projet, les conséquences des effets dominos dans le cadre de la présente étude ne sont donc pas étudiées.

7.5 MISE EN PLACE DES MESURES DE SECURITE

Les tableaux suivants ont pour objectif de synthétiser les fonctions de sécurité identifiées et mises en œuvre sur les éoliennes du parc de Luce. Dans le cadre de la présente étude de dangers, les fonctions de sécurité sont détaillées selon les critères suivants :

- Fonction de sécurité: Description de l'objectif de la ou des mesures de sécurité (empêcher, détecter, contrôler ou limiter) en relation avec un ou plusieurs événements conduisant à un accident majeur identifié dans l'analyse préliminaire des risques. Plusieurs mesures de sécurité peuvent assurer une même fonction de sécurité.
- Numéro de la fonction de sécurité.
- Mesures de sécurité : Identification des mesures assurant la fonction de sécurité concernée.
 Dans le cas de système instrumenté de sécurité (SIS), tous les éléments de la chaîne de sécurité sont présentés (détection + traitement de l'information + action).
- Description : Description de la mesure de maîtrise des risques.
- Indépendance : Niveau d'indépendance de la mesure de maîtrise des risques vis-à-vis des autres systèmes de sécurité (condition remplie ou non).
- Temps de réponse : Temps requis entre la sollicitation de la mesure de maîtrise des risques et l'exécution de la fonction de sécurité.
- Efficacité : Capacité de la mesure de maîtrise des risques à remplir la fonction de sécurité pendant une durée donnée et dans son contexte d'utilisation (0 ou 100%).
- Testabilité : Tests réalisés sur les mesures de maîtrise des risques.

 Maintenance : Périodicité des contrôles permettant de vérifier la performance de la mesure maîtrise des risques dans le temps.

Conformément à l'article 15 de l'arrêté ministériel du 26 août 2011 des essais permettant le fonctionnement correct des équipements de sécurité seront réalisés. Ces essais sont les suivants :

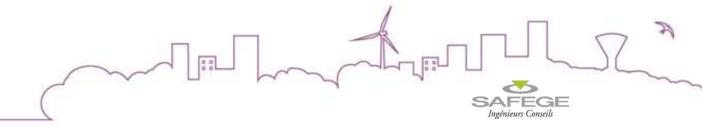
- Un arrêt,
- Un arrêt d'urgence,
- Un arrêt depuis un régime de survitesse ou de simulation de ce régime.

Une vérification de l'état fonctionnel des équipements de mise à l'arrêt cité ci-dessus seront réalisé au moins une fois par an.

Tableau 20 : Mesures de maîtrise des risques

n°1	Prévenir la mise en mouvement de l'éolienne lors de la formation de glace
Mesures de sécurité	Système de déduction de la formation de glace sur les pales de l'aérogénérateur
mesures de securite	Procédure adéquate de redémarrage
Description	Système de monitoring avec code spécifique d'arrêt de l'installation en cas de corrélation de plusieurs facteurs susceptibles d'être à l'origine de la formation de glace (détecteur de température, de balourd et instruments météorologiques).Le redémarrage peut ensuite se faire soit automatiquement après disparition des conditions de givre, soit manuellement après inspection visuelle sur site.
	Non
Indépendance	Les systèmes traditionnels s'appuient généralement sur des fonctions et des appareils propres à l'exploitation du parc.
Temps de réponse	Quelques minutes (< 60 min), conformément à l'article 25 de l'arrêté du 26 août 2011.
Efficacité	100%
Testabilité	Tests menés par le concepteur au moment de la construction de l'éolienne
Maintenance	Vérification du système au bout de 3 mois de fonctionnement puis maintenance curative en cas de dysfonctionnement de l'équipement
n°2	Prévenir l'atteinte des personnes par la chute de glace
Mesures de sécurité	Panneautage en pied de machine
mesures de securite	Éloignement des zones habitées et fréquentées
Description	Mise en place de panneaux informant de la possible formation de glace en pied de machines (conformément à l'article 14 de l'arrêté du 26 août 2011)
Indépendance	Oui
Temps de réponse	Non concerné
Temps de réponse	Non concerné 100%
Temps de réponse Efficacité	
	100% Il est considéré que compte tenu de l'implantation des panneaux et de l'entretien
Efficacité	100% Il est considéré que compte tenu de l'implantation des panneaux et de l'entretien prévu, l'information des promeneurs sera systématique.

	T		
	Capteurs de température des pièces mécaniques		
Mesures de sécurité	Définition de seuils critiques de température pour chaque type de composant avec alarme		
	Mise à l'arrêt ou bridage jusqu'à refroidissement		
Description	-		
Indépendance	Oui		
Temps de réponse	Non concerné		
Efficacité	100%		
Testabilité	/		
Maintenance	Vérification du système au bout de 3 mois de fonctionnement puis contrôle annuel conformément à l'arrêté du 26 août 2011. Maintenance curative en cas de dysfonctionnement de l'équipement.		
n°4	Prévenir la survitesse		
Mesures de sécurité	Détection de survitesse		
Description	Système à sécurité positive auto-surveillé implanté sous le multiplicateur. Mise à l'arrêt de l'éolienne en cas de trop grande rotation (pales mises en position dite « drapeau »).		
Indépendance	Oui		
Temps de réponse	Temps de détection < 1 min		
Efficacité	100%		
Testabilité	Test d'arrêt simple, d'arrêt d'urgence et de la procédure d'arrêt en cas de survitesse avant la mise en service des aérogénérateurs conformément à l'article 15 de l'arrêté du 26 août 2011.		
Maintenance	Vérification du système au bout de 3 mois de fonctionnement puis contrôle annuel conformément à l'article 18 de l'arrêté du 26 août 2011. Maintenance curative en cas de dysfonctionnement de l'équipement.		
n°5	Prévenir les courts-circuits		
Mesures de sécurité	Coupure de la transmission électrique en cas de fonctionnement anormal d'un composant électrique		
	Les organes et armoires électriques de l'éolienne seront équipés d'organes de coupure et de protection adéquats et correctement dimensionnés.		
Description	Tout fonctionnement anormal des composants électriques est suivi d'une coupure de la transmission électrique et à la transmission d'un signal d'alerte vers l'exploitant qui prend alors les mesures appropriées.		
Indépendance	Oui		
Temps de réponse	Temps de détection < 1 min		
Efficacité	100%		
Testabilité	Test d'arrêt simple, d'arrêt d'urgence et de la procédure d'arrêt en cas de survitesse avant la mise en service des aérogénérateurs conformément à l'article 15 de l'arrêté du 26 août 2011.		
Maintenance	Vérification du système au bout de 3 mois de fonctionnement puis contrôle annuel conformément à l'article 18 de l'arrêté du 26 août 2011. Maintenance curative en cas de dysfonctionnement de l'équipement.		
n°6	Prévenir les effets de la foudre		
Mesures de sécurité	Mise à la terre et protection des éléments de l'aérogénérateur.		


	Respect de la norme IEC 61 400 – 24 (juin 2010)		
Description	Dispositif de capture + mise à la terre		
	Parasurtenseurs sur les circuits électriques		
Indépendance	Oui		
Temps de réponse	Immédiat dispositif passif		
Efficacité	100 %		
Testabilité	/		
Maintenance	Contrôle visuel des pales et des éléments susceptibles d'être impactés par la foudre inclus dans les opérations de maintenance, conformément à l'article 9 de l'arrêté du 26 août 2011.		
N°7	Protection et intervention incendie		
Mesures de sécurité	Capteurs de températures sur les principaux composants de l'éolienne pouvant permettre, en cas de dépassement des seuils, la mise à l'arrêt de la machine Système de détection incendie relié à une alarme transmise à un poste de contrôle. Extincteurs		
	Intervention des services de secours		
	Détecteurs de fumée qui lors de leur déclenchement conduisent à la mise en arrêt de la machine et au découplage du réseau électrique. De manière concomitante, un message d'alarme est envoyé au centre de télésurveillance.		
Description	Les détecteurs de fumées seront placés dans la nacelle et au pied de la tour à proximité des armoires électriques.		
	L'éolienne sera également équipée d'extincteurs qui peuvent être utilisés par les personnels d'intervention (cas d'un incendie se produisant en période de maintenance)		
Indépendance	Oui		
	< 1 minute pour les détecteurs et l'enclenchement de l'alarme		
Temps de réponse	L'exploitant ou l'opérateur désigné sera en mesure de transmettre l'alerte aux services d'urgence compétents dans un délai de 15 minutes suivant l'entrée en fonctionnement anormal de l'aérogénérateur. Le temps d'intervention des services de secours est quant à lui dépendant de la zone géographique.		
Efficacité	100 %		
Testabilité	/		
	Vérification du système au bout de 3 mois de fonctionnement puis contrôle annuel conformément à l'article 18 de l'arrêté du 26 août 2011.		
Maintenance	Le matériel incendie (type extincteurs) sera contrôlé périodiquement par le fabriquant du matériel ou un organisme extérieur.		
	Maintenance curative suite à une défaillance du matériel.		
N°8	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation)		
	Détecteurs de niveau et de pression d'huile		
Mesures de sécurité	Procédure d'urgence		
	Kit antipollution		

	Déclenchement d'une alarme et mise à l'arrêt du rotor sur détection d'une anomalie du niveau ou de pression d'huile.
	Les opérations de vidange font l'objet de procédures spécifiques. Dans tous les cas, le transfert des huiles s'effectue de manière sécurisée via un système de tuyauterie et de pompes directement entre l'élément à vidanger et le camion de vidange.
	Des kits de dépollution d'urgence composés de grandes feuilles de textile absorbant pourront être utilisés afin :
Description	– de contenir et arrêter la propagation de la pollution ;
	 – d'absorber jusqu'à 20 litres de déversements accidentels de liquides
	(huile, eau, alcools) et produits chimiques (acides, bases, solvants) ;
	– de récupérer les déchets absorbés.
	Si ces kits de dépollution s'avèrent insuffisants, une société spécialisée récupérera et traitera le gravier souillé via les filières adéquates, puis le remplacera par un nouveau revêtement.
Indépendance	Oui
Temps de réponse	Dépendant du débit de fuite
Efficacité	100 %
Testabilité	/
Maintenance	Inspection des niveaux d'huile plusieurs fois par an
n°9	Prévenir les défauts de stabilité et d'assemblage de l'éolienne (construction – exploitation)
Manage de la constitución	Contrôles réguliers des fondations et des différentes pièces d'assemblages (ex : brides ; joints, etc.)
Mesures de sécurité	Procédures qualités
	Attestation du contrôle technique (procédure permis de construire)
	La norme IEC 61 400-1 « Exigence pour la conception des aérogénérateurs » fixe les prescriptions propres à fournir « un niveau approprié de protection contre les dommages résultant de tout risque durant la durée de vie » de l'éolienne.
Description	Ainsi la nacelle, le nez, les fondations et la tour répondront au standard IEC 61 400- 1. Les pales respectent le standard IEC 61 400-1; 12; 23.
	Les éoliennes sont protégées contre la corrosion due à l'humidité de l'air, selon la norme ISO 9223.
Indépendance	Oui
Temps de réponse	NA
Efficacité	100 %
Testabilité	NA
Marine	Les couples de serrage (brides sur les diverses sections de la tour, bride de raccordement des pales au moyeu, bride de raccordement du moyeu à l'arbre lent, éléments du châssis, éléments du pitch system, couronne du
Maintenance	Yam Gear, boulons de fixation de la nacelle) sont vérifiés au bout de 3
	mois de fonctionnement puis tous les 3 ans, conformément à l'article 18 de l'arrêté du 26 août 2011.
N°10	Prévenir les erreurs de maintenance
Mesures de sécurité	Procédure maintenance
Description	Préconisations du manuel de maintenance Formation du personnel
Indépendance	Oui
_	1

Temps de réponse	NA		
Efficacité	100 %		
Testabilité	NA		
Maintenance	Mise à jour des procédures de maintenance.		
Maintenance	Rappel des formations du personnel		
N°11	Prévenir les risques de dégradation de l'éolienne en cas de vent fort		
	Classe d'éolienne adaptée au site et au régime de vents.		
Mesures de sécurité	Détection et prévention des vents forts et tempêtes.		
resures de securite	Arrêt automatique et diminution de la prise au vent de l'éolienne (mise en drapeau progressive des pales) par le système de conduite.		
	L'éolienne est mise à l'arrêt si la vitesse de vent mesurée dépasse la vitesse maximale pour laquelle elle a été conçue.		
Description	Deux capteurs seront implantés sur le toit de la nacelle (1 capteur actif et 1 capteur de secours).		
Indépendance	Oui		
Temps de réponse	< 1 min		
Efficacité	100 %.		
Testabilité	/		
	Contrôle des capteurs de vent tous les 6 mois.		
Maintenance	Au bout de 3 mois, vérification du bon fonctionnement des dispositifs de sécurité (arrêts d'urgence, frein à disque, arrêt de survitesse du générateur, arrêt de survitesse du rotor).		

7.6 CONCLUSION DE L'ANALYSE PRELIMINAIRE DES RISQUES

Dans le cadre de l'analyse préliminaire des risques génériques des parcs éoliens, trois catégories de scénarios peuvent être exclues de l'étude détaillée, en raison de leur faible intensité

Tableau 21 : Scénarios exclus de l'analyse détaillée des risques

Phénomène dangereux	Justification
Incendie de l'éolienne (nacelle)	En cas d'incendie de nacelle, et en raison de la hauteur des nacelles, les effets thermiques ressentis au sol seront mineurs. Par exemple, dans le cas d'un incendie de nacelle située à 50 mètres de hauteur, la valeur seuil de 3 kW/m² n'est pas atteinte. Dans le cas d'un incendie au niveau du mât les effets sont également mineurs et l'arrêté du 26 Août 2011 encadre déjà largement la sécurité des installations. Ces effets ne sont donc pas étudiés dans l'étude détaillée des risques. Néanmoins, il peut être redouté que des chutes d'éléments (ou des projections) interviennent lors d'un incendie. Ces effets sont étudiés avec les projections et les chutes d'éléments.
Incendie du transformateur	La réglementation encadre déjà largement la sécurité de ces installations (l'arrêté du 26 août 2011 et impose le respect des normes NFC 15-100, NFC 13-100 et NFC 13-200). Le poste de livraison étant déjà autorisé, il n'est pas pris en compte dans cette étude.
Infiltration d'huile dans le sol	En cas de fuite d'huile, les volumes de substances libérés restent mineurs. Ce scénario n'est pas détaillé dans le chapitre de l'étude détaillée des risques.

Les cinq catégories de scénarios étudiées dans l'étude détaillée des risques sont les suivantes :

- Effondrement de l'éolienne,
- Projection de tout ou partie de pale,
- Chute d'éléments de l'éolienne,
- Projection de glace,
- Chute de glace.

Ces scénarios regroupent plusieurs causes et séquences d'accident. En estimant la probabilité, gravité, cinétique et intensité, il est possible de caractériser les risques pour toutes les séquences d'accidents.

8. ETUDE DÉTAILLÉE DES RISQUES

L'étude détaillée des risques vise à caractériser les scénarios retenus à l'issue de l'analyse préliminaire des risques en termes de probabilité, cinétique, intensité et gravité. Son objectif est donc de préciser le risque généré par l'installation et d'évaluer les mesures de maîtrise des risques mises en œuvre. L'étude détaillée permet de vérifier l'acceptabilité des risques potentiels générés par l'installation.

8.1 RAPPEL DES DEFINITIONS

Les règles méthodologiques applicables pour la détermination de l'intensité, de la gravité et de la probabilité des phénomènes dangereux sont précisées dans l'arrêté ministériel du 29 septembre 2005.

Cet arrêté ne prévoit de détermination de l'intensité et de la gravité que pour les effets de surpression, de rayonnement thermique et toxique.

Cet arrêté est complété par la circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003.

Cette circulaire précise en son point 1.2.2 qu'à l'exception de certains explosifs pour lesquels les effets de projection présentent un comportement caractéristique à faible distance, les projections et chutes liées à des ruptures ou fragmentations ne sont pas modélisées en intensité et gravité dans les études de dangers.

Force est néanmoins de constater que ce sont les seuls phénomènes dangereux susceptibles de se produire sur des éoliennes.

Afin de pouvoir présenter des éléments au sein de cette étude de dangers, il est proposé de recourir à la méthode ad hoc préconisée par le guide technique nationale relatif à l'étude de dangers dans le cadre d'un parc éolien dans sa version de mai 2012. Cette méthode est inspirée des méthodes utilisées pour les autres phénomènes dangereux des installations classées, dans l'esprit de la loi du 30 juillet 2003.

Cette première partie de l'étude détaillée des risques consiste donc à rappeler les définitions de chacun de ces paramètres, en lien avec les références réglementaires correspondantes.

8.1.1 CINETIQUE

La cinétique d'un accident est la vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables.

Selon l'article 8 de l'arrêté du 29 septembre 2005, la cinétique peut être qualifiée de « lente » ou de « rapide ». Dans le cas d'une cinétique lente, les personnes ont le temps d'être mises à l'abri à la suite de l'intervention des services de secours. Dans le cas contraire, la cinétique est considérée comme rapide.

Dans le cadre d'une étude de dangers pour des aérogénérateurs, il est supposé, de manière prudente, que tous les accidents considérés ont une cinétique rapide. Ce paramètre ne sera donc pas détaillé à nouveau dans chacun des phénomènes redoutés étudiés par la suite.

8.1.2 INTENSITE

L'intensité des effets des phénomènes dangereux est définie par rapport à des valeurs de référence exprimées sous forme de seuils d'effets toxiques, d'effets de surpression, d'effets thermiques et d'effets liés à l'impact d'un projectile, pour les hommes et les structures (article 9 de l'arrêté du 29 septembre 2005).

On constate que les scénarios retenus au terme de l'analyse préliminaire des risques pour les parcs éoliens sont des scénarios de projection (de glace ou de toute ou partie de pale), de chute d'éléments (glace ou toute ou partie de pale) ou d'effondrement de machine.

Or, les seuils d'effets proposés dans l'arrêté du 29 septembre 2005 caractérisent des phénomènes dangereux dont l'intensité s'exerce dans toutes les directions autour de l'origine du phénomène, pour des effets de surpression, toxiques ou thermiques). Ces seuils ne sont donc pas adaptés aux accidents générés par les aérogénérateurs.

Dans le cas de scénarios de projection, l'annexe II de cet arrêté précise : « Compte tenu des connaissances limitées en matière de détermination et de modélisation des effets de projection, l'évaluation des effets de projection d'un phénomène dangereux nécessite, le cas échéant, une analyse, au cas par cas, justifiée par l'exploitant. Pour la délimitation des zones d'effets sur l'homme ou sur les structures des installations classées, il n'existe pas à l'heure actuelle de valeur de référence. Lorsqu'elle s'avère nécessaire, cette délimitation s'appuie sur une analyse au cas par cas proposée par l'exploitant ».

C'est pourquoi, pour chacun des événements accidentels retenus (chute d'éléments, chute de glace, effondrement et projection), deux valeurs de référence ont été retenues :

- 5% d'exposition : seuils d'exposition très forte
- 1% d'exposition : seuil d'exposition forte

Le degré d'exposition est défini comme le rapport entre la surface atteinte par un élément chutant ou projeté et la surface de la zone exposée à la chute ou à la projection.

Tableau 22 : Échelle d'intensité des phénomènes dangereux

Intensité	Degré d'exposition
Exposition très forte	Supérieur à 5 %
Exposition forte	Compris entre 1 % et 5 %
Exposition modérée	Inférieur à 1 %

Les zones d'effets sont définies pour chaque événement accidentel comme la surface exposée à cet événement.

8.1.3 GRAVITE

Par analogie aux niveaux de gravité retenus dans l'annexe III de l'arrêté du 29 septembre 2005, les seuils de gravité sont déterminés en fonction du nombre équivalent de personnes permanentes dans chacune des zones d'effet définies dans le paragraphe précédent.

Tableau 23 : Echelle de gravité

Intensité Gravité	Zone d'effet d'un événement accidentel engendrant une exposition très forte	Zone d'effet d'un événement accidentel engendrant une exposition forte	Zone d'effet d'un événement accidentel engendrant une exposition modérée	
Désastreux - 5	Plus de 10 personnes exposées	Plus de 100 personnes exposées	Plus de 1000 personnes exposées	
Catastrophique - 4 Moins de 10 personnes exposées		Entre 10 et 100 personnes exposées	Entre 100 et 1000 personnes exposées	
Important - 3	Au plus 1 personne exposée	Entre 1 et 10 personnes exposées	Entre 10 et 100 personnes exposées	
Sérieux - 2	Aucune personne exposée	Au plus 1 personne exposée	Moins de 10 personnes exposées	
Modéré - 1	Pas de zone de létalité en dehors de l'établissement		Présence humaine < 1 personne	

8.1.4 PROBABILITE

L'annexe I de l'arrêté du 29 septembre 2005 définit les classes de probabilité qui doivent être utilisée dans les études de dangers pour caractériser les scénarios d'accident majeur :

Tableau 24 : Echelle de probabilité

Echelle quantitative (probabilité annuelle)	Échelle qualitative	Niveau
P > 10-2	Courant Se produit sur le site considéré et/ou peut se produire à plusieurs reprises pendant la durée de vie des installations malgré d'éventuelles mesures correctives	А
10-3 < P < 10-2	Probable S'est produit et/ou peut se produire pendant la durée de vie des installations	В
10-4 < P < 10-3	Improbable Évènement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité	С
10-5 < P < 10-4	Rare S'est déjà produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité du scénario	D
P ≤ 10-5	Extrêmement rare Possible mais non rencontré au niveau mondial. n'est pas impossible au vu des connaissances actuelles	Е

Dans le cadre de l'étude de dangers des parcs éoliens, la probabilité de chaque événement accidentel identifié pour une éolienne est déterminée en fonction :

- de la bibliographie relative à l'évaluation des risques pour des éoliennes.
- du retour d'expérience français.
- des définitions qualitatives de l'arrêté du 29 Septembre 2005.

Il convient de noter que la probabilité qui sera évaluée pour chaque scénario d'accident correspond à la probabilité qu'un événement redouté se produise sur l'éolienne (probabilité de départ) et non à la probabilité que cet événement produise un accident suite à la présence d'un véhicule ou d'une personne au point d'impact (probabilité d'atteinte). En effet, l'arrêté du 29 septembre 2005 impose une évaluation des probabilités de départ uniquement.

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Cependant, on pourra rappeler que la probabilité qu'un accident sur une personne ou un bien se produise est très largement inférieure à la probabilité de départ de l'événement redouté.

La probabilité d'accident est en effet le produit de plusieurs probabilités :

 P_{ERC} = probabilité que l'événement redouté central (défaillance) se produise = probabilité de départ

P_{orientation} = probabilité que l'éolienne soit orientée de manière à projeter un élément lors d'une défaillance dans la direction d'un point donné (en fonction des conditions de vent notamment)

P_{rotation} = probabilité que l'éolienne soit en rotation au moment où l'événement redouté se produit (en fonction de la vitesse du vent notamment)

P_{atteinte} = probabilité d'atteinte d'un point donné autour de l'éolienne (sachant que l'éolienne est orientée de manière à projeter un élément en direction de ce point et qu'elle est en rotation)

P_{présence} = probabilité de présence d'un enjeu donné au point d'impact sachant que l'élément est projeté en ce point donné

Dans le cadre des études de dangers des éoliennes, une approche majorante assimilant la probabilité d'accident ($P_{accident}$) à la probabilité de l'événement redouté central (PERC) a été retenue.

8.2 CARACTERISATION DES SCENARIOS RETENUS

8.2.1 DONNEES D'ENTREE

Le type d'éolienne qui sera installé sur le parc de LUCE correspond au modèle N117 – 3 MW de la société NORDEX.

Compte tenu du type de modèle existant envisagé, chaque aérogénérateur a une hauteur de moyeu de maximum 120 m (soit une hauteur maximale de mât de 120 m au sens de la réglementation ICPE) et un diamètre de rotor de 116.80 m maximum, pour une hauteur totale en bout de pale maximale de 178.40 m.

Les calculs de zones d'effet et d'intensité relatives à chaque scénario retenu sont donnés pour ce type d'éolienne.

	R (m) =	H (m) =	L (m) =	LB (m) =
	longueur des pales	Hauteur du mât	Largeur du mât	largeur de la base de la pale
Gabarit retenu	58.40	120	4,07	2,404 m

8.2.2 EFFONDREMENT DE L'EOLIENNE

8.2.2.1 Zone d'effet

La zone d'effet de l'effondrement d'une éolienne correspond à une surface circulaire de rayon égal à la hauteur totale de l'éolienne en bout de pale, soit 178.40 mètres maximum dans le cas des éoliennes du parc de Luce.

Les risques d'atteinte d'une personne ou d'un bien en dehors de cette zone d'effet sont négligeables et ils n'ont jamais été relevés dans l'accidentologie ou la littérature spécialisée.

Tableau 25 : Zone d'effet liée à l'effondrement d'une éolienne

Effondrement de l'éolienne	
Distance d'effet	Rayon inférieur ou égale à la hauteur totale de l'éolienne
	178.40 m

Les zones d'effet liées à l'effondrement d'une éolienne sont représentées sur les cartes jointes en Annexe 2.

8.2.2.2 Intensité

Pour le phénomène d'effondrement de l'éolienne, le degré d'exposition correspond au ratio entre la surface totale balayée par le rotor et non balayée par le rotor, d'une part, et la superficie de la zone d'effet du phénomène, d'autre part.

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène d'effondrement de l'éolienne dans le cas du parc éolien de Luce.

Tableau 26 : Zone d'effet liée à l'effondrement d'une éolienne

Effondrement de l'éolienne			
Zi (m²) = Zone d'impact	Intensité		
Zi = H*L+3*R*LB/2			
699	Modérée		

L'intensité du phénomène d'effondrement est nulle au-delà de la zone d'effondrement.

8.2.2.3 Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005. Il est possible de définir les différentes classes de gravité pour le phénomène d'effondrement, dans le rayon inférieur ou égal à la hauteur totale de l'éolienne.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène d'effondrement et la gravité associée.

La zone d'effet du phénomène touche une zone composée de « terrains non aménagés et très peu fréquentés (champs, prairies, forêts, friches, marais) », conformément à la fiche n°1 de la circulaire du 10 mai 2010, on comptera 1 personne par tranche de 10 ha.

Tableau 27 : Détermination de la gravité de l'effondrement d'une éolienne

	E	effondrement de l'éolienne	
Éolienne	Surface potentiellement touchée par le phénomène étudié	Nombre de personnes permanentes (ou équivalent personnes permanentes)	Gravité
B1	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
B2	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
В3	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
B4	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E1	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E2	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E3	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E4	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E5	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E6	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E7	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E8	99 986 m²	0,99 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée

8.2.2.4 Probabilité

Pour l'effondrement d'une éolienne, les valeurs retenues dans la littérature sont détaillées dans le tableau suivant.

Tableau 28 : Probabilité de l'effondrement d'une éolienne

Source	Probabilité	Justification
Guide for risk based zoning of wind turbines ¹ (Guide pour le calcul des distances d'effet des éoliennes)	4,5 x 10 ⁻⁴	Retour d'expérience
Spécification of minimum distances ² (Distances minimales requises).	1,8 x 10 ⁻⁴ (effondrement de la nacelle et de la tour)	Retour d'expérience

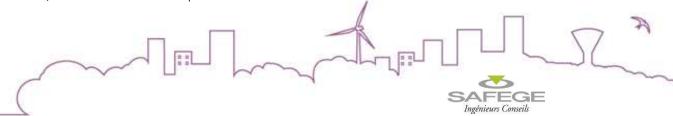
Ces valeurs correspondent à une classe de probabilité « C » selon l'arrêté du 29 septembre 2005.

Le retour d'expérience français montre également une classe de probabilité « C ». En effet, il a été recensé seulement 7 événements pour 15 667 années d'expérience³ ; soit une probabilité de $4,47 \times 10^{-4}$ par éolienne et par an.

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 septembre 2005 d'une probabilité « C », à savoir : « Évènement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « C » est donc retenue par défaut pour ce type d'événement.

Néanmoins, les dispositions constructives des éoliennes ayant fortement évolué, le niveau de fiabilité est aujourd'hui bien meilleur. Des mesures de maîtrise des risques supplémentaires ont été mises en place sur les machines récentes et permettent de réduire significativement la probabilité d'effondrement. Ces mesures de mesures de sécurité sont notamment :


- respect intégral des dispositions de la norme IEC 61 400-1.
- contrôles réguliers des fondations et des différentes pièces d'assemblages.
- système de détection des survitesses et un système redondant de freinage.
- système de détection des vents forts et un système redondant de freinage et de mise en sécurité des installations – un système adapté est installé en cas de risque cyclonique.

On note d'ailleurs, dans le retour d'expérience français, qu'aucun effondrement n'a eu lieu sur les éoliennes mises en service après 2005.

De manière générale, le respect des prescriptions de l'arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation permet de s'assurer que les éoliennes font l'objet de mesures réduisant significativement la probabilité d'effondrement.

Il est considéré que la classe de probabilité de l'accident est « D », à savoir : « S'est produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité ».

³ Une année d'expérience correspond à une éolienne observée pendant une année. Ainsi, si on a observé une éolienne pendant 5 ans et une autre pendant 7 ans, on aura au total 12 années d'expérience

¹ Guide for risk based zoning of wind turbines

² Specification of minimum distances, Dr-ing. Venker ingenieurgesellschaft, 2004

8.2.3 CHUTE D'ELEMENT DE L'EOLIENNE

8.2.3.1 Zone d'effet

La chute d'éléments comprend la chute de tous les équipements situés en hauteur : trappes, boulons, morceaux de pales ou pales entières. Le cas majorant est ici le cas de la chute de pale. Il est retenu dans l'étude détaillé des risques pour représenter toutes les chutes d'éléments.

Le risque de chute d'élément est cantonné à la zone de survol des pales.

Tableau 29 : Zone d'effet liée la chute d'un élément de l'éolienne

Chute d'élément de l'éolienne	
Distance d'effet	Rayon inférieur ou égale à un demi-diamètre de rotor autour du mât, soit la longueur d'une pale (m)
	58.4

Les zones d'effet liées à la chute d'un élément de l'éolienne sont représentées sur les cartes jointes en Annexe 2.

8.2.3.2 Intensité

Pour le phénomène de chute d'éléments, le degré d'exposition correspond au ratio entre la surface d'un élément (cas majorant d'une pale entière se détachant de l'éolienne) et la superficie de la zone d'effet du phénomène (zone de survol).

Le tableau ci-après permet d'évaluer l'intensité du phénomène de chute d'éléments de l'éolienne dans le cas du parc éolien de Luce.

Tableau 30 : Détermination de l'intensité de la chute d'élément d'une éolienne

Chute d'élément de l'éolienne			
Zi (m²) = Zone d'impact	Ze (m²) = Zone d'effet du phénomène	d (%) = degré d'exposition du phénomène	Intensité
$Zi = R*LB/2$ $Ze = \pi*R^2$		d = Zi/Ze	
70	10 715	0,66	Modérée

8.2.3.3 Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005, il est possible de définir les différentes classes de gravité pour le phénomène de chute d'éléments, dans le rayon inférieur ou égal à la hauteur totale de l'éolienne.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de chute d'éléments et la gravité associée.

La zone d'effet du phénomène touche une zone composée de « terrains non aménagés et très peu fréquentés (champs, prairies, forêts, friches, marais) », conformément à la fiche n°1 de la circulaire du 10 mai 2010, on comptera 1 personne par tranche de 10 ha.

Tableau 31 : Détermination de la gravité de chute d'élément de l'éolienne

Chute d'élément de l'éolienne			
Éolienne	Surface potentiellement touchée par le phénomène étudié	Nombre de personnes permanentes (ou équivalent personnes permanentes)	Gravité
B1	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
B2	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
В3	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
B4	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E1	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E2	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E3	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E4	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E5	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E6	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E7	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E8	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée

8.2.3.4 Probabilité

Peu d'élément sont disponibles dans la littérature pour évaluer la fréquence des événements de chute de pales ou d'éléments d'éoliennes.

Le retour d'expérience connu en France montre que ces événements ont une classe de probabilité « C » (2 chutes et 5 incendies pour 15 667 années d'expérience, soit 4,47 x 10^{-4} événement par éolienne et par an).

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 septembre 2005 d'une probabilité « C » : « Événement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « C » est donc retenue par défaut pour ce type d'événement.

8.2.4 CHUTE DE GLACE

Les périodes de gel et l'humidité de l'air peuvent entraîner, dans des conditions de température et d'humidité de l'air bien particulières, une formation de givre ou de glace sur l'éolienne, ce qui induit des risques potentiels de chute de glace.

Selon l'étude WECO (Wind energy production in cold climate – Bengt Tammelin et al. – Finnish Meteorological Institut, Helsinki, 2000), une grande partie du territoire français (hors zones de montagne) est concerné par moins d'un jour de formation de glace par an. Certains secteurs du territoire comme les zones côtières affichent des moyennes variant entre 2 et 7 jours de formation de glace par an.

Lors des périodes de dégel qui suivent les périodes de grand froid, des chutes de glace peuvent se produire depuis la structure de l'éolienne (nacelle, pales). Normalement, le givre qui se forme en fine pellicule sur les pales de l'éolienne fond avec le soleil. En cas de vents forts, des morceaux de glace peuvent se détacher. Ils se désagrègent généralement avant d'arriver au sol. Ce type de chute de glace est similaire à ce qu'on observe sur d'autres bâtiments et infrastructures.

8.2.4.1 Zone d'effet

Le risque de chute de glace est cantonné à la zone de survol des pales. Pour le parc éolien de Luce, la zone d'effet a donc un rayon de 58,5 m. Cependant, il convient de noter que, lorsque l'éolienne est à l'arrêt, les pales n'occupent qu'une faible partie de cette zone.

Tableau 32 : Zone d'effet liée à la chute de glace

Chute de glace	
Distance d'effet	Rayon inférieur ou égale à un demi-diamètre de rotor autour du mât, soit la longueur d'une pale (m)
	58.4

Les zones d'effet liées à la chute de glace sont représentées sur les cartes jointes en Annexe 2.

8.2.4.2 Intensité

Pour le phénomène de chute de glace, le degré d'exposition correspond au ratio entre la surface d'un morceau de glace et la superficie de la zone d'effet du phénomène (zone de survol).

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de chute de glace dans le cas du parc éolien de Luce.

Tableau 33 : Zone d'effet liée à la chute de glace

Chute de glace			
Zi (m²) = Zone d'impact	Ze (m²) = Zone d'effet du phénomène	d (%) = degré d'exposition du phénomène	Intensité
Zi = SG*	Ze = π*R²	d = Zi/Ze	
1	10 715	0,009	Modérée

^{*} SG : Surface du morceau de glace = 1 m^2 (données du guide technique : Élaboration d'une étude de dangers dans le cadre de parc éolien).

L'intensité est nulle hors de la zone de survol.

8.2.4.3 Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005, il est possible de définir les différentes classes de gravité pour le phénomène de chute de glace, dans la zone de survol de l'éolienne.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène d'effondrement et la gravité associée.

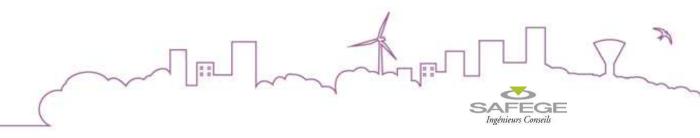

La zone d'effet du phénomène touche une zone composée de « terrains non aménagés et très peu fréquentés (champs, prairies, forêts, friches, marais) », conformément à la fiche n° 1 de la circulaire du 10 mai 2010, on comptera 1 personne par tranche de 10 ha.

Tableau 34 : Détermination de la gravité d'une chute de glace

	Chute de glace		
Éolienne	Surface potentiellement touchée par le phénomène étudié	Nombre de personnes permanentes (ou équivalent grav	
B1	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
B2	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
В3	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
B4	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E1	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E2	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E3	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E4	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E5	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E6	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E7	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée
E8	10 715 m²	0,11 personnes => soit moins d'1 personne susceptible d'être impactée	Modérée

8.2.4.4 Probabilité

De façon conservatrice, il est considéré que la probabilité est de classe « A », c'est-à-dire une probabilité supérieure à 10^{-2} .

8.2.5 PROJECTION DE PALES OU DE FRAGMENTS DE PALES

8.2.5.1 Zone d'effet

Dans l'accidentologie française rappelée en annexe 1, la distance maximale relevée et vérifiée par le groupe de travail précédemment mentionné pour une projection de fragment de pale est de 380 m par rapport au mât de l'éolienne. On constate que les autres données disponibles dans cette accidentologie montrent des distances d'effet inférieures.

L'accidentologie éolienne mondiale manque de fiabilité car la source la plus importante (en termes statistiques) est une base de données tenue par une association écossaise majoritairement opposée à l'énergie éolienne.

Pour autant, des études de risques déjà réalisées dans le monde ont utilisé une distance de 500 m, en particulier les études Guide for Risk-Based Zoning of wind Turbines (Energy research centre of the Netherlands, H. Braam, G.J. van Mulekom, R.W. Smit, 2005) et Specification of minimum distances (Dr-ing. Veenker ingenieurgesellschaft, 2004).

Sur la base de ces éléments et de façon conservatrice, une distance d'effet de 500 m est considérée comme distance raisonnable pour la prise en compte des projections de pales ou de fragments de pales dans le cadre des études de dangers des parcs éoliens.

Tableau 35 : Zone d'effet liée à la projection de pales ou de fragments de pales

Projection de pales ou de fragments de pales		
Distance d'effet	Distance considérée au regard du retour d'expérience des accidents de ce type. Rayon de projection (Rp)	
	500 m	

Les zones d'effet liées à la projection de pales ou de fragments de pales sont représentées sur les cartes jointes en Annexe 2.

8.2.5.2 Intensité

Pour le phénomène de projection de pale ou de fragment de pale, le degré d'exposition correspond au ratio entre la surface d'un élément (cas majorant d'une pale entière) et la superficie de la zone d'effet du phénomène (500 m).

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de projection d'éléments de l'éolienne dans le cas du parc éolien de Luce.

Tableau 36 : Zone d'effet liée à la projection de pales ou de fragments de pales

	Projection de pales ou de fragments de pales			
$Zi (m^2) = Ze (m^2) = d (\%) = Zone d'impact Zone d'effet du phénomène degré d'exposition du phénomène Intensité$			Intensité	
$Zi = R*LB/2 Ze = \pi*(Rp)^2$		d = Zi/Ze		
70	785 397	0,009	Modérée	

8.2.5.3 Gravité

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005, il est possible de définir les différentes classes de gravité pour le phénomène de projection, dans la zone de 500 m autour de l'éolienne.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène d'effondrement et la gravité associée :

La zone d'effet du phénomène touche une zone composée de :

- « terrains non aménagés et très peu fréquentés (champs, prairies, forêts, friches, marais) », conformément à la fiche n°1 de la circulaire du 10 mai 2010, on comptera 1 personne par tranche de 10 ha.
- Pour les voiries départementales traversant la zone du projet, le trafic moyen journalier est inférieur à 2 000 veh./j. Deux approches ont été confrontées :
- la première en intégrant le trafic réel estimé par le CG de la Somme, en appliquant les ratios (x personnes / km par tranche de 100 véhicules/jour), conformément à la fiche n°1 de la circulaire du 10 mai 2010.
- La seconde en intégrant un ratio de 1 personne par tranche de 10 ha.

La seconde approche est maximaliste et pénalisante. Dans le cadre du projet de Luce, compte-tenu de l'incertitude relative au trafic sur l'ensemble des axes routiers de la zone du projet, nous avons choisi de présenter les résultats de cette approche qui maximise la gravité du phénomène de projection de pales ou de fragments de pales.

Tableau 37 : Détermination de la gravité de la projection de pales ou de fragments de pales

	Projection de pales ou de fragments de pales			
Éolienne	Surface potentiellement touchée par le phénomène étudié	Nombre de personnes permanentes (ou équivalent personnes permanentes)	Gravité	
B1	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	
B2	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	
В3	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	
B4	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	
E1	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	
E2	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	
E3	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	
E4	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	
E5	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	
E6	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	

	Projection de pales ou de fragments de pales			
Surface potentiellement Nombre de personnes permanentes (ou équivalent Gravit Éolienne touchée par le personnes permanentes)			Gravité	
E7	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	
E8	785 397 m²	7,85 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse	

8.2.5.4 Probabilité

Les valeurs retenues dans la littérature pour une rupture de tout ou partie de pale sont détaillées dans le tableau suivant.

Tableau 38 : Probabilité de la projection de pale ou de fragments de pales

Source	Fréquence	Justification
Site specific hazard assesment for a wind farm project	1 x 10 ⁻⁶	Respect de l'Eurocode EN 1990 – Basis of structural design
Guide for risk based zoning of wind turbines	1,1 x 10 ⁻³	Retour d'expérience au Danemark (1984- 1992) et en Allemagne (1989-2001)
Specification of minimum distances	6,1 x 10 ⁻⁴	Recherche Internet des accidents entre 1996 et 2003

Ces valeurs correspondent à des classes de probabilité de « B », « C » ou « E ».

Le retour d'expérience français montre également une classe de probabilité « C » (12 événements pour 15 667 années d'expérience, soit 7,66 x 10^{-4} événement par éolienne et par an).

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 septembre 2005 d'une probabilité « C » : « Événement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « C » est donc retenue par défaut pour ce type d'événement.

Néanmoins, les dispositions constructives des éoliennes ayant fortement évolué, le niveau de fiabilité est aujourd'hui bien meilleur. Des mesures de maîtrise des risques supplémentaires ont été mises en place notamment :

- Les dispositions de la norme IEC 61 400-1.
- Les dispositions des normes IEC 61 400-24 et EN 62 305-3 relatives à la foudre.
- Système de détection des survitesses et un système redondant de freinage.
- Système de détection des vents forts et un système redondant de freinage et de mise en sécurité des installations – un système adapté est installé en cas de risque cyclonique.
- Utilisation de matériaux résistants pour la fabrication des pales (fibre de verre ou de carbone, résines, etc.).

De manière générale, le respect des prescriptions de l'arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation permet de s'assurer que les éoliennes font l'objet de mesures réduisant significativement la probabilité de projection.

Il est considéré que la classe de probabilité de l'accident est « D » : « S'est produit mais a fait l'objet de mesures correctrices réduisant significativement la probabilité ».

8.2.6 PROJECTION DE GLACE

8.2.6.1 Zone d'effet

L'accidentologie rapporte quelques cas de projection de glace. Ce phénomène est connu et possible, mais reste difficilement observable et n'a jamais occasionné de dommage sur les personnes ou les biens.

En ce qui concerne la distance maximale atteinte par ce type de projectiles, il n'existe pas d'information dans l'accidentologie. La référence [15] propose une distance d'effet fonction de la hauteur et du diamètre de l'éolienne, dans les cas où le nombre de jours de glace est important et où l'éolienne n'est pas équipée de système d'arrêt des éoliennes en cas de givre ou de glace.

Cette distance de projection est jugée conservative dans des études postérieures. A défaut de données fiables, il est proposé de considérer cette formule pour le calcul de la distance d'effet pour les projections de glace.

Tableau 39 : Zone d'effet liée à la projection de glace

Projection de glace					
Distance d'effet	Rayon de projection de glace Rpg=1,5*(H+2R) autour de l'éolienne				
	355.2 m				

Les zones d'effet liées à la projection de glace sont représentées sur les cartes jointes en Annexe 2.

8.2.6.2 Intensité

Pour le phénomène de projection de glace, le degré d'exposition correspond au ratio entre la surface d'un morceau de glace (cas majorant de 1 m²) et la superficie de la zone d'effet du phénomène.

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de projection de glace de l'éolienne dans le cas du parc éolien de Luce.

Tableau 40 : Zone d'effet liée à la projection de glace

Projection de glace											
Zi (m²) = Zone d'impact	Rpg (m) = Rayon de projection de glace	Ze (m²) = Zone d'effet du phénomène	d (%) = degré d'exposition du phénomène	Intensité							
Zi = SG	Rpg=1,5*(H+2R)	Ze = π*Rpg²	d = Zi/Ze								
1	355.2	396 365	<< 1	Modérée							

* SG: Surface du morceau de glace = 1 m^2 (données du guide technique : Élaboration d'une étude de dangers dans le cadre de parc éolien).

8.2.6.3 *Gravité*

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005, il est possible de définir les différentes classes de gravité pour le phénomène de projection de glace, dans la zone d'effet autour de l'éolienne.

Il a été observé dans la littérature disponible qu'en cas de projection, les morceaux de glace se cassent en petits fragments dès qu'ils se détachent de la pale. La possibilité de l'impact de glace sur des personnes abritées par un bâtiment ou un véhicule est donc négligeable et ces personnes ne doivent pas être comptabilisées pour le calcul de la gravité.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène projection de glace et la gravité associée.

La zone d'effet du phénomène touche une zone composée de :

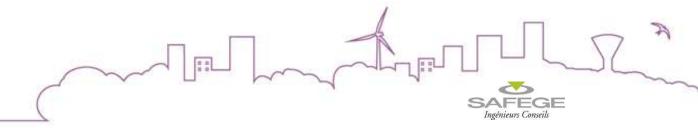
- « terrains non aménagés et très peu fréquentés (champs, prairies, forêts, friches, marais)
 », conformément à la fiche n° 1 de la circulaire du 10 mai 2010, on comptera 1 personne par tranche de 10 ha.
- Le réseau de voiries départementales. Conformément à la fiche n°1 de la circulaire du 10 mai 2010 on comptera 1 personne exposée par tranche de 10 hectares.

Tableau 41 : Détermination de la gravité de la projection de glace

		Projection de glace	
Éolienne	Surface potentiellement touchée par le phénomène étudié	Nombre de personnes permanentes (ou équivalent personnes permanentes)	Gravité
B1	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
B2	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
В3	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
B4	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
E1	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
E2	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
E3	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
E4	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
E5	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
E6	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
E7	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse
E8	396 365 m²	4 personnes => soit moins de 10 personnes susceptibles d'être impactées	Sérieuse

8.2.6.4 Probabilité

Au regard de la difficulté d'établir un retour d'expérience précis sur cet événement et considérant des éléments suivants :


- Les mesures de prévention de projection de glace imposées par l'arrêté du 26 août 2011 ;
- Le recensement d'aucun accident lié à une projection de glace ;

Une probabilité forfaitaire « B – événement probable » est proposée pour cet événement.

8.3 SYNTHESE DE L'ETUDE DETAILLEE DES RISQUES

8.3.1 TABLEAUX DE SYNTHESE DES SCENARIOS ETUDIES

Le tableau suivant récapitule, pour chaque événement redouté central retenu, les paramètres de risques : la cinétique, l'intensité, la gravité et la probabilité.

SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

Tableau 42 : Synthèse de l'étude détaillée des risques

Scénario	Zone d'effet	Cinétique	Probabilité	Eoliennes	Intensité	Nb de personnes permanentes exposées	Gravité
1-Effondrement de l'éolienne	Disque dont le rayon correspond à une hauteur totale de la machine en bout de pale : 178.4 m	Rapide	D	Toutes (B1 à B4 et E1 à E8)	Exposition modérée	< 1 pers./ha	Modérée
2-Chute d'élément de l'éolienne	Zone de survol : 58.4 m	Rapide	С	Toutes (B1 à B4 et E1 à E8)	Exposition modérée	< 1 pers./ha	Modérée
3-Chute de glace	Zone de survol : 58.4 m	Rapide	А	Toutes (B1 à B4 et E1 à E8)	Exposition modérée	< 1 pers./ha	Modérée
4-Projection de pales	500 m autour de chaque éolienne	Rapide	D	Toutes (B1 à B4 et E1 à E8)	Exposition modérée	< 10 pers./ha	Sérieuse
5-Projection de glace	1,5 x (H + 2R) : 355.2 m	Rapide	В	Toutes (B1 à B4 et E1 à E8)	Exposition modérée	< 10 pers./ha	Sérieuse

8.3.2 ACCEPTABILITE DES RISQUES

Enfin, la dernière étape de l'étude détaillée des risques consiste à rappeler l'acceptabilité des accidents potentiels pour chacun des phénomènes dangereux étudiés.

Pour conclure à l'acceptabilité, la matrice de criticité ci-dessous, adaptée de la circulaire du 29 septembre 2005 reprise dans la circulaire du 10 mai 2010 mentionnée ci-dessus sera utilisée.

Tableau 43 : Matrice d'acceptabilité du risque

Concáguenco	Classe de	Classe de probabilité									
Conséquence	E	D	С	В	Α						
Désastreux											
Catastrophique											
Important											
Sérieux		Scenario 4		Scenario 5							
Modéré		Scenario 1	Scenario 2		Scenario 3						

Légende de la matrice

Couleur	Niveau de risque	Acceptabilité
	Risque très faible	Acceptable
	Risque faible	Acceptable
	Risque important	Non acceptable

Rappel des scénarios : 1-Effondrement de l'éolienne / 2-Chute d'élément de l'éolienne / 3-Chute de glace / 4-Projection de pales / 5-Projection de glace

Il apparaît au regard de la matrice ainsi complétée que :

- Aucun accident n'apparaît dans les cases rouges de la matrice (risque important).
- Certains accidents figurent en case jaune. Pour ces accidents, il convient de souligner que les fonctions de sécurité détaillées dans la partie VII.6 sont mises en place.

Le risque engendré par le parc éolien de Luce est acceptable.

8.3.3 CARTOGRAPHIES DES RISQUES

Les cartographies des zones d'effet pour chaque scénario, avec mention de la classe de Gravité, sont jointes en Annexe 2 ; il y a 5 cartes au total :

- Carte 1 Effondrement de l'éolienne
- Carte 2 Chute d'élément de l'éolienne
- Carte 3 Chute de glace
- Carte 4 Projection de pales
- Carte 5 Projection de glace

Les cartographies de synthèse des risques sont jointes en annexe 3 ; il y a 2 cartes au total :

- Carte 6 : synthèse des risques / classe de gravité pour l'ensemble des éoliennes et des scénarios
- Carte 7 : synthèse des risques / degré d'exposition (intensité) et nombre de personnes permanentes exposées pour l'ensemble des éoliennes et des scénarios

Compte tenu de la morphologie du parc éolien de Luce, répartie en deux zones assez distinctes à l'ouest (B1 à B4) et à l'est (E1 à E8), et pour des raisons de lisibilité des cartes, chacune des cartes est dédoublées (zone est / zone ouest).

9. DESCRIPTION DES MESURES ET DES MOYENS DE PRÉVENTION ET DE PROTECTION

9.1 FORMATION DU PERSONNEL

Le personnel intervenant sur les installations est formé et encadré.

Cette formation porte sur:

- l'éolienne et les risques associés,
- les règles de sécurité et les consignes à respecter,
- l'utilisation des équipements de protection individuelle,
- sauveteur secouriste du travail
- le travail en hauteur,
- l'évacuation d'urgence d'une éolienne,
- la lutte contre le feu,
- l'habilitation électrique,
- le risque routier est également pris en compte.

9.2 MAINTENANCE

L'inspection et l'entretien sont réalisés par du personnel formé selon des procédures précises. Des check-lists sont établies pour assurer la traçabilité des opérations effectuées et un rapport est généré à chaque intervention.

Toute intervention est consignée dans un « logbbook » présent dans chaque éolienne.

Une fois les éoliennes montées (en quelques jours) les opérations de raccordements électriques et de réglage débutent et prennent plusieurs semaines.

Des opérations de maintenance sont ensuite régulièrement réalisées.

Au bout de 3 mois de fonctionnement, sont vérifiés :

- Les couples de serrage de chaque bride présente dans l'éolienne ;
- L'état des dispositifs de continuité électrique (pales nacelle), inspection visuelle des câbles, des balais du rotor, vérification des serrages sur les jeux de barre, contrôle du dispositif de mise à la terre;
- L'état des pales et du dispositif de captage de foudre ;
- Les niveaux d'huile du multiplicateur, de la centrale hydraulique, des motoréducteurs, le niveau du fluide de refroidissement, l'absence de fuite;
- L'état des équipements de sécurité ;

- Le bon fonctionnement des dispositifs de sécurité (arrêts d'urgence, frein à disque, capteur de vibration, arrêt sur survitesse du générateur, arrêt sur survitesse du rotor);
- L'état des batteries du système de contrôle ;
- L'état du transformateur.

Tous les 6 mois ces opérations sont refaites en partie et d'autres sont réalisées :

- Le contrôle des batteries en pied de tour ;
- Le contrôle de bruit et de vibration des roulements ;
- Les opérations de graissage et de lubrification ;
- Le contrôle de la qualité des huiles ;
- Le contrôle de la pression des circuits hydrauliques et hydropneumatiques;
- Le contrôle des capteurs de vents ;
- Le contrôle de l'élévateur de personnes.

Annuellement, le bon fonctionnement du pich system est vérifié. Ainsi que :

- Le remplacement de certains filtres ;
- Le contrôle de l'usure du frein ;
- Le contrôle de pression du circuit de freinage d'urgence, le contrôle des onduleurs ;
- Le contrôle des extincteurs ;
- Le contrôle du palan, de l'échelle et du système antichute associé;
- Les visites d'inspections périodiques électriques.

D'autres opérations sont faites tous les 4 ans (contrôle de serrage, contrôle de pression du circuit d'huile du multiplicateur, changement des huiles).

A l'occasion des contrôles les pièces défectueuses ou usées sont remplacées. Certaines pièces sont automatiquement remplacées au bout d'une période donnée (5 ou 7 ans en fonction des pièces).

En plus de ces opérations spécifiques aux éoliennes, des contrôles réglementaires périodiques sont réalisés par des organismes agréés conformément au code du travail (installations électriques, appareils de levage, matériel incendie).

Les interventions sont encadrées par le plan de prévention des risques, qui détaille les risques induit par le travail dans les éoliennes, et spécifie les consignes et procédures à suivre en cas de danger.

9.3 MESURE DE SECURITE

Une synthèse des détecteurs qui seront mis en place, de leur fonctionnalité et des actions associées est donnée dans le tableau suivant.

Tableau 44 : Synthèse des détecteurs

Détecteurs	Caractéristiques et localisation	Fonction	Actions associées
Détecteur incendie	Implanté dans la nacelle et au pied de la tour à proximité des armoires électriques.	Détecter un départ de feu	Déclenchement alarme et mise à l'arrêt de la machine « emergency stop » et isolement électrique
Capteur de vibration	Système CMS installé sur la chaine cinématique	Détection des usures anormales des gros composants (boite de vitesse, roulement)	Déclenchement d'une information et vérification de l'usure de l'élément
Détecteur de vent fort	2 capteurs implantés sur le toit de la nacelle. 1 seul capteur est activé (raccordé au système de contrôle), le 2ème est en secours.	Mesurer la vitesse du vent	Mise à l'arrêt de l'éolienne en cas de vents trop fort
Détecteur de survitesse	Système à sécurité positive auto-surveillé implanté dans la nacelle.	Détecter les vitesses de rotation du générateur et de l'arbre	Mise à l'arrêt de l'éolienne en cas de trop grande rotation (pales mises en position dite « drapeau »).
Détecteur de balourd (shock sensor)	Implanté sous le multiplicateur.	Détecter toutes anomalies de la chaîne cinématique	Mise à l'arrêt de la machine de type « emergency stop »
Détecteur de glace	Sonde vibratoire disposée sur la nacelle.	Détection de formation de glace sur les pales	Mise à l'arrêt de l'éolienne
	1 capteur est implanté sous la nacelle pour mesurer la température extérieure.		
Détecteur de température et d'échauffement	De plus certains équipements sont également équipés (paliers et roulements des machines tournantes, enroulements du générateur et du transformateur, circuit d'huile, circuit d'eau).	Contrôle des températures ambiantes	Si dépassement des seuils, déclenchement alarme et mise à l'arrêt du rotor
Détecteur de pression et de niveau	Implanté dans le bloc hydraulique de chaque pale.	Contrôle des niveaux et des pressions des circuits hydrauliques	Si dépassement des seuils, déclenchement alarme et mise à l'arrêt du rotor
Détecteur d'arc	Implanté dans les armoires électriques disposées dans la nacelle.	Détecter toute formation d'un arc électrique	Mise hors tension de la machine

9.4 CONFORMITE DES LIAISONS ELECTRIQUES INTERIEURES

Remarque : L'article 6-II du Décret n°2014-450 du 2 mai 2014 relatif à l'expérimentation d'une autorisation unique en matière d'installations classées pour la protection de l'environnement précise « Lorsque le projet nécessite une approbation au titre de l'article L.323-11 du code de l'énergie, l'étude de dangers comporte les éléments justifiant de la conformité des liaisons électriques intérieures avec la réglementation technique en vigueur ». Le présent chapitre décrit le fonctionnement des réseaux électriques, et leur conformité avec la réglementation.

9.4.1 FONCTIONNEMENT DES RESEAUX DE L'INSTALLATION

Le fonctionnement des réseaux électriques est décrit au chapitre 4.3.

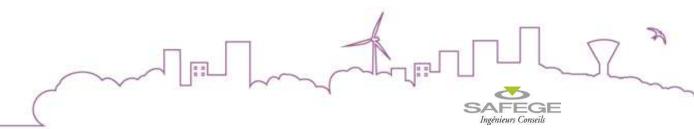
9.4.2 QUALIFICATION DU PERSONNEL

Le personnel sera qualifié pour l'intervention sur les équipements électriques.

Les procédures et formations du personnel en charge de l'installation des équipements seront conformes à la norme NF C 18-510 pour les installations basse tension et haute tension.

Au moment du chantier, un plan de prévention sera mis en place pour identifier par thèmes les risques liés au chantier et mettre en place des actions pour les éviter.

9.4.3 RESPECT DES NORMES TECHNIQUES


Les éoliennes et le poste de livraison ainsi que les réseaux électriques respecteront différentes normes techniques dont la norme UTE C 18-510.

Le poste de livraison respectera les normes suivantes : NF C 13-100, NF C 13-200 et NF C 15-100.

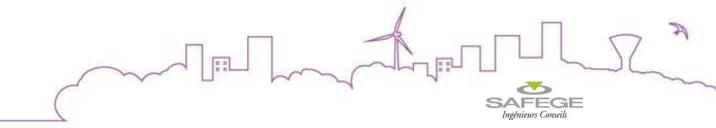
Les câbles respecteront la norme NF C 33-226 (HTA).

Ces ouvrages seront établis suivant les prescriptions de l'arrêté technique du 17 mai 2001 conformément aux règles de l'art et suivant les publications UTE.

Ainsi, ces ouvrages sont conformes à la réglementation technique en vigueur.

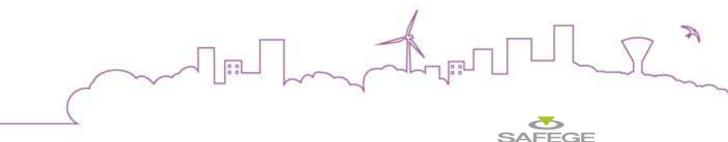
SOUS-DOSSIER N°5 « ETUDE DE DANGERS»

10. CONCLUSION


La technologie éolienne n'est pas une source de dangers très importante comparativement à d'autres activités classées au titre des ICPE. Elle bénéficie d'un large retour d'expérience et d'une amélioration continue, depuis la conception des installations à leur fonctionnement.

Le projet d'implantation du parc éolien de Luce bénéficie d'un **ensemble de mesures de prévention et de protection** qui concourent à réduire au maximum tant la probabilité d'occurrence des évènements que leurs effets associés.

La localisation du projet, en milieu rural, loin des zones d'habitation limite les risques sur les populations.


11. ANNEXES

- Annexe 1 : Accidentologie Extrait du guide technique « Élaboration de l'étude de dangers dans le cadre des parcs éoliens
- Annexe 2 : Cartographies de zones d'effet des phénomènes dangereux étudiés
- Carte 1 Effondrement de l'éolienne
- Carte 2 Chute d'élément de l'éolienne
- Carte 3 Chute de glace
- Carte 4 Projection de pales
- Carte 5 Projection de glace
- Annexe 3 : Cartographies de synthèse
- Carte 6 : synthèse des risques / classe de gravité pour l'ensemble des éoliennes et des scénarios
- Carte 7 : synthèse des risques / degré d'exposition (intensité) et nombre de personnes permanentes exposées pour l'ensemble des éoliennes et des scénarios

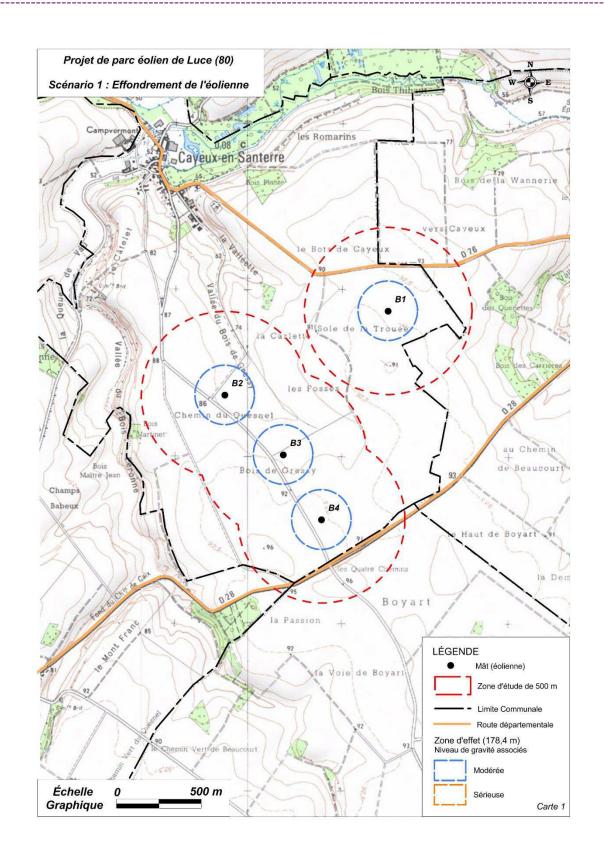
Annexe 1 Accidentologie - Extrait du guide technique - « Élaboration de l'étude de dangers dans le cadre des parcs éoliens »

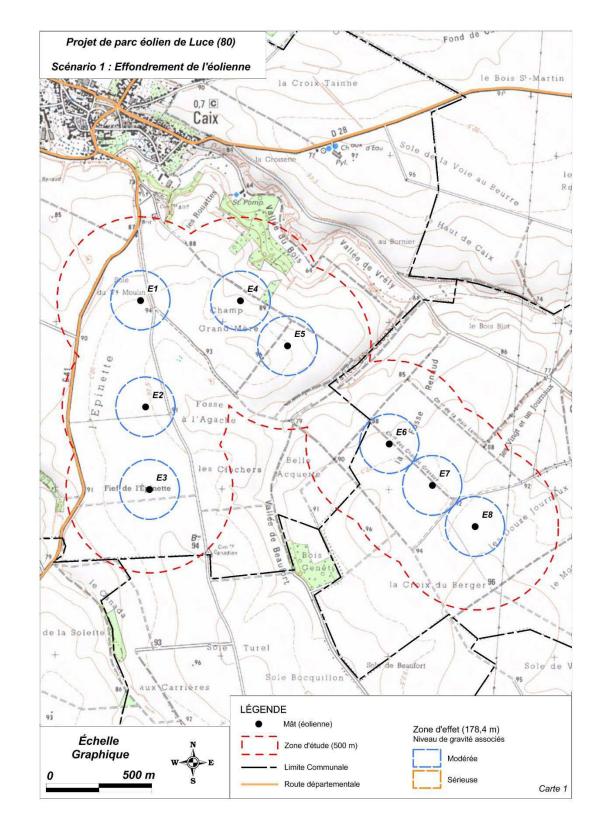
Rupture de pale 08/10/2006 Pleyber - Christ - Site du Télégraphe Non Chute d'une pale de 20 m pesant 3 tonnes Chute d'une pale de 20 m pesant 3 tonnes Allongement des pales et retrait de sécurité (débridage), pas de REX suite aux précédents accidents sur le même parc Articles de presse (Ouest France) Journal FR3 Acte de malveillance : explosion de bonbonne de gaz au pied de 2 épliennes	Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information
## Professional Part of Colors ## Professional Part of Colors	Effondrement	Novembre 2000	Port la Nouvelle	Aude	0,5	1993	Non	d'une pale (coupure courant prolongée pendant 4 jours suite à la	Tempête avec foudre répétée	
Haintenance 01/07/2002 Fruncise Houselet Signan Aude 0.66 2000 0u Grave electrisound area from the first per 10 consideration poor architecture poor of the consideration	Rupture de pale	2001		Aude	0,75	1998	Non	Bris de pales en bois (avec inserts)	?	Site Vent de Colère
National Part of the Control Part of the Contr	Effondrement	01/02/2002	Wormhout	Nord	0,4	1997	Non	Bris d'hélice et mât plié	Tempête avec foudre répétée	
Righture de pale 26/22/202 Reviginaria (an experimental de presse (Maria de presse)))) (Maria de presse (Maria de presse (Maria de presse (Mar	Maintenance	01/07/2002		Aude	0,66	2000	Oui	Grave électrisation avec brûlures d'un technicien	haute d'un transformateur 690V/20kV en tension. Le mètre utilisé par la victime, déroulé sur 1,46m, s'est soudainement plié et est entré dans la zone du transformateur, créant un	Rapport du CGM
Rupture de pale 20/2/20/2 Salese-Limouss Aude 0,75 1998 Non Bris de place to la (see injects) pur trais dellement. Morteaux Dyndroctionnement du système de finingen (Mill Die du J. 1998 Non Bris de place) dissémblés sur 100 m. Effondrement 20/03/2004 Disposition (Part of the College of the	Effondrement	28/12/2002		Aude	0,85	2002	Oui			Site Vent de Colère
Ropture de pale 05/11/2003 Saléle Limousis Aude 0.75 1998 Non de pales des des des des des des des des des d	Rupture de pale	25/02/2002	Sallèle-Limousis	Aude	0,75	1998	Non	Bris de pale en bois (avec inserts) sur une éolienne bipale	Tempête	
Effondrement 01/01/2004 La Purtei / Boulone sur level de Calais 0,75 2002 Non Cassure d'une pale, chute du mât et destruction totale. Une pale tombe sur la plage et les deux autres derivent sur 8 km. Effondrement 20/03/2004 Concident de la fondation de	Rupture de pale	05/11/2003	Sallèle-Limousis	Aude	0,75	1998	Non		Dysfonctionnement du système de freinage	Article de presse (Midi Libre du
Effordrement 20/03/2004 Loon-plage / Port de Dunkerque 20/03/2004 Port de	Effondrement	01/01/2004	Boulogne sur	Pas de Calais	0,75	2002	Non		Tempête	du CGM Site Vent de Colère Articles de presse (Windpower Monthly May 2004, La Voix du Nord du
Rupture de pale 22/06/2004 Pieyber - Christ-Site du Telégraphe 80/07/2004 Rupture de pale 22/06/2004 Pieyber - Christ-Site du Telégraphe 20/06/2004 Rupture de pale 20/06/2004 Ruptu	Effondrement	20/03/2004	Port de	Nord	0,3	1996	Non	•		Rapport du CGM Site Vent de Colère Articles de presse (La Voix du Nord du 20/03/2004 et du
Rupture de pale 08/07/2004 - File du Télégraphe Finistère 0,3 2001 Non Survitesse puis éjection de bouts de pales de 1,5 et 2,5m à 50m, mat intact Finistère 10,3 2001 Non Survitesse puis éjection de bouts de pales de 1,5 et 2,5m à 50m, mat intact Finistère 10,3 2004 Rupture de pale 2004 Escales - Conilhac Concilhac C	Rupture de pale	22/06/2004	- Site du	Finistère	0,3	2001	Non			Articles de presse (Le Télégramme, Ouest
Rupture de pale 2004 Conilhac Rupture de pale + incendie Rupture de pale - 2005 Rupture de pale - 2005 - 2006 - 2007 - 2004 -	Rupture de pale	08/07/2004	- Site du	Finistère	0,3	2001	Non			Articles de presse (Le Télégramme, Ouest France du
Rupture de pale + incendie 22/12/2004 Montjoyer - Rochefort Drôme 0,75 2004 Non Bris des trois pales et début d'incendie sur une éolienne (survitesse de régulation, et dysfonctionnement du système de freinage Rupture de pale 22/12/2004 Nord 0,4 1997 Non Bris des trois pales et début d'incendie sur une éolienne (survitesse de régulation, et dysfonctionnement du système de freinage Site Vent de Colère Site Vent de Colère Site Vent de Colère Site Vent de Colère Site FED Article de presse (La Tribune du 30/12/2004) Site Vent de Colère Site Vent de Colère Site FED Article de presse (La Tribune du 30/12/2004) Site Vent de Colère Site Vent de Colère Site FED Article de presse (La Tribune du 30/12/2004) Site Vent de Colère Site FED Article de presse (Ouest France) Journal FR3 Acte de malveillance : explosion de bonbonne de gaz au pied de 2 éoliennes. L'une d'entre elles a mis le feu en pieds de mat qui s'est propagé Jusqu'à la nacelle. Site FED Article de presse (La Tribune du 30/12/2004) Site Vent de Colère Site Vent de Colère Site FED Article de presse (Ouest France) Journal FR3 Communiqués de presse exploitant Article Libre) Adde 0,66 2001 Oui Sectionnement du mât puis effondrement d'une éolienne dans une Tempête (vents mesurés à 137Kmh) Article de presse (La Voix du	Rupture de pale	2004		Aude	0,75	2003	Non	Bris de trois pales	-	Site Vent de Colère
Rupture de pale 18/11/2006 Roquetaillade Roqueta		22/12/2004		Drôme	0,75	2004	Non		problème de régulation, et	Article de presse (La Tribune du 30/12/2004)
Rupture de pale 08/10/2006 - Site du Télégraphe Finistère 0,3 2004 Non Chute d'une pale de 20 m pesant 3 tonnes (débridage), pas de REX suite aux précédents accidents sur le même parc Articles de presse (Ouest France) Journal FR3 Acte de malveillance : explosion de bonbonne de gaz au pied de 2 éoliennes. L'une d'entre elles a mis le feu en pieds de mat qui s'est propagé jusqu'à la nacelle. Malveillance / incendie criminel Malveillance / incendie criminel Malveillance / incendie criminel Tempête (vents mesurés à 137Kmb) Article de presse (La Voix du	Rupture de pale	2005	Wormhout	Nord	0,4	1997	Non	Bris de pale	-	Site Vent de Colère
Incendie 18/11/2006 Roquetaillade Aude 0,66 2001 Oui éoliennes. L'une d'entre elles a mis le feu en pieds de mat qui s'est propagé jusqu'à la nacelle. Malveillance / incendie criminel Articles de presse (La Dépêche, Midi Libre) Ffondrement 03/12/2006 Roquetaillade Aude 0,66 2001 Oui Sectionnement du mât puis effondrement d'une éolienne dans une Tempête (vents mesurés à 137Kmh) Article de presse (La Voix du	Rupture de pale	08/10/2006	- Site du	Finistère	0,3	2004	Non	Chute d'une pale de 20 m pesant 3 tonnes	(débridage), pas de REX suite aux précédents	Articles de presse (Ouest France)
	Incendie	18/11/2006	Roquetaillade	Aude	0,66	2001	Oui	éoliennes. L'une d'entre elles a mis le feu en pieds de mat qui s'est propagé	Malveillance / incendie criminel	exploitant Articles de presse (La Dépêche,
	Effondrement	03/12/2006	Bondues	Nord	0,08	1993	Non		Tempête (vents mesurés à 137Kmh)	

Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information
Rupture de pale	31/12/2006	Ally	Haute-Loire	1,5	2005	Oui	Chute de pale lors d'un chantier de maintenance visant à remplacer les rotors	Accident faisant suite à une opération de maintenance	Site Vent de Colère
Rupture de pale	03/2007	Clitourps	Manche	0,66	2005	Oui	Rupture d'un morceau de pale de 4 m et éjection à environ 80 m de distance dans un champ	Cause pas éclaircie	Site FED Interne exploitant
Chute d'élément	11/10/2007	Plouvien	Finistère	1,3	2007	Non	Chute d'un élément de la nacelle (trappe de visite de 50 cm de diamètre)	Défaut au niveau des charnières de la trappe de visite. Correctif appliqué et retrofit des boulons de charnières effectué sur toutes les machines en exploitation.	Article de presse (Le Télégramme)
Emballement	03/2008	Dinéault	Finistère	0,3	2002	Non	Emballement de l'éolienne mais pas de bris de pale	Tempête + système de freinage hors service (boulon manquant)	Base de données ARIA
Collision avion	04/2008	Plouguin	Finistère	2	2004	Non	Léger choc entre l'aile d'un bimoteur Beechcraftch (liaison Ouessant-Brest) et une pale d'éolienne à l'arrêt. Perte d'une pièce de protection au bout d'aile. Mise à l'arrêt de la machine pour inspection.	Mauvaise météo, conditions de vol difficiles (sous le plafond des 1000 m imposé par le survol de la zone) et faute de pilotage (altitude trop basse)	Articles de presse (Le Télégramme, Le Post)
Rupture de pale	19/07/2008	Eriez-la-Brûlée - Voie sacrée	Meuse	2	2007	Oui	Chute de pale et projection de morceaux de pale suite à un coup de foudre	Foudre + défaut de pale	Communiqué de presse exploitant Article de presse (l'Est Républicain 22/07/2008)
Incendie	28/08/2008	Vavillers	Somme	2	2006	Oui	Incendie de la nacelle	Problème au niveau d'éléments électroniques	Dépêche AFP 28/08/2008
Rupture de pale	26/12/2008	Raival - Voie sacrée	Meuse	2	2007	Oui	Chute de pale	-	Communiqué de presse exploitant Article de presse (l'Est Républicain)
Maintenance	26/01/2009	Clastres	Aisne	2,75	2004	Oui	Accident électrique ayant entraîné la brûlure de deux agents de maintenance	Accident électrique (explosion d'un convertisseur)	Base de données ARIA
Rupture de pale	08/06/2009	Bollène	Vaucluse	2,3	2009	Oui	Bout de pale d'une éolienne ouvert	Coup de foudre sur la pale	Interne exploitant
Incendie	21/10/2009	Froidfond - Espinassière	Vendée	2	2006	Oui	Incendie de la nacelle	Court-circuit dans transformateur sec embarqué en nacelle ?	Article de presse (Ouest-France) Communiqué de presse exploitant Site FED
Incendie	30/10/2009	Freyssenet	Ardèche	2	2005	Oui	Incendie de la nacelle	Court-circuit faisant suite à une opération de maintenance (problème sur une armoire électrique)	Base de données ARIA Site FED Article de presse (Le Dauphiné)
Maintenance	20/04/2010	Toufflers	Nord	0,15	1993	Non	Décès d'un technicien au cours d'une opération de maintenance	Crise cardiaque	Article de presse (La Voix du Nord 20/04/2010)
Effondrement	30/05/2010	Port-la-Nouvelle Sigean	Aude	0,2	1991	Non	Effondrement d'une éolienne	Le rotor avait été endommagé par l'effet d'une survitesse. La dernière pale (entière) a pris le vent créant un balourd. Le sommet de la tour a plié et est venu buter contre la base entrainant la chute de l'ensemble.	Interne exploitant
Incendie	19/09/2010	Montjoyer - Rochefort	Drôme	0,75	2004	Non	Emballement de deux éoliennes et incendie des nacelles.	Maintenance en cours, problème de régulation, freinage impossible, évacuation du personnel, survitesse de +/- 60 tr/min	Articles de presse Communiqué de presse SER-FEE
Maintenance	15/12/2010	Pouillé-les- Coteaux	Loire Atlantique	2,3	2010	Oui	Chute de 3 m d'un technicien de maintenance à l'intérieur de l'éolienne. L'homme de 22 ans a été secouru par le GRIMP de Nantes. Aucune fracture ni blessure grave.	-	Interne SER-FEE
Transport	31/05/2011	Mesvres	Saosn-et-Loire	-	-	-	Collision entre un train régional et un convoi exceptionnel transportant une pale d'éolienne, au niveau d'un passage à niveau. Aucun blessé	-	Article de presse (Le Bien Public 01/06/2011)
Rupture de pale	14/12/2011	Non Communiqué	Non Communiqué	2,5	2003	Oui	Pale endommagée par la foudre. Fragments retrouvés par l'exploitant agricole à une distance n'excédant pas 300 m.	Foudre	Interne exploitant
Incendie	03/01/2012	Non Communiqué	Non Communiqué	2,3	2006	Non	Départ de feu en pied de tour. Acte de vandalisme : la porte de l'éolienne a été découpée pour y introduire des pneus et de l'huile que l'on a essayé d'incendier. Le feu ne s'est pas propagé, dégâts très limités et restreints au pied de la tour.	Malveillance / incendie criminel	Interne exploitant

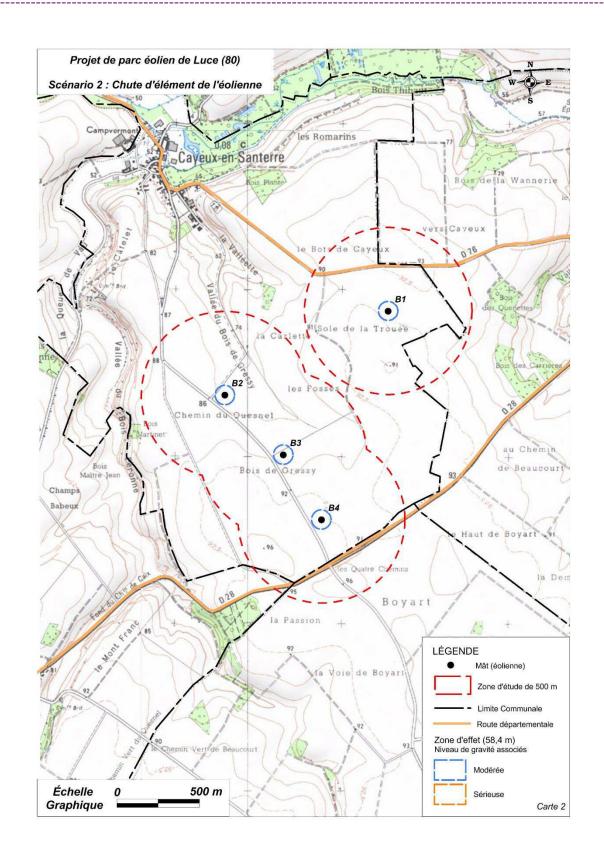
Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information
Rupture de pale	05/01/2012	Widehem	Pas de Calais	0,75	2000	Non	Bris de pales, dont des fragments ont été projetés jusqu'à 380 m. Aucun blessé et aucun dégât matériel (en dehors de l'éolienne).	Tempête + panne d'électricité	Article de presse (La Voix du Nord 06/01/2012) Vidéo DailyMotion Interne exploitant
Maintenance	06/02/2012	Lehaucourt	Aisne	Non communiqué	Non communiqué	Non communiqué	Au cours d'une opération de maintenance dans la nacelle d'une éolienne de 100 m de hauteur, un arc électrique (690 V) blesse deux sous-traitants, l'un gravement (brûlures aux mains et au visage) et l'autre légèrement (brûlures aux mains). Les victimes portaient leurs EPI lors des faits. Un accident similaire s'était produit en 2009 (ARIA 35814)	Non communiqué	ARIA
Projection d'éléments	11/04/2012	Sigean	Aude	Non communiqué	Non communiqué	Non communiqué	Une éolienne se met en arrêt automatique suite à l'apparition d'un défaut à 10 h. Des agents de maintenance la réarment à 12h14. Un défaut de vibration apparaît 11 minutes plus tard. Sur place, les techniciens constatent la présence d'un impact sur le mât et la projection à 20 m d'un débris de pale long de 15 m	Foudre	ARIA
Chute de pale	05/2012	Chemin d'Ablis	Eure-et-Loir	52	2008	Oui	Chute d'une pale au pied d'une éolienne en plein champ	Cause en cours d'éclaircissement	Interne / Exploitant
Effondrement	30/05/2012	Port-la-Nouvelle	Aude	0,2	1991	Non	Les rafales de vent à 130 km/h observées durant la nuit ont provoqué l'effondrement de la tour en treillis de 30 m de haut. Construit en 1991, l'aérogénérateur de 200 kW faisait partie des premières installations de ce type en France. Il était à l'arrêt pour réparations au moment des faits. Le site, ouvert au public, est sécurisé	Non communiqué	ARIA
Projection d'élément	01/11/2012	Vieillepesse	Cantal	2,5	2011	Non communiqué	Un élément de 400 g constitutif d'une pale d'éolienne est projeté à 70 m du mât, à l'intérieur de la parcelle clôturée du parc de 4 aérogénérateurs de 2,5 MW mis en service en 2011.	Non communiqué	ARIA
Incendie	05/11/2012	Sigean	Aude	0,66	Non communiqué	Non communiqué	Le feu s'est déclaré dans l'armoire électrique en pied d'éolienne. Un dysfonctionnement de disjoncteur situé sur l'éolienne a entraîné la propagation de courants de court circuit faisant fondre les câbles et entraînant un départ d'incendie dans la nacelle. Un dysfonctionnement du frein de l'éolienne à la suite de la perte des dispositifs de pilotage résultant de l'incendie en pied pourrait avoir agi comme circonstance aggravante.	Non communiqué	ARIA
Chute de pale	06/03/2013	Conilhac-de-la- Montagne	Aude	Non communiqué	Non communiqué	Non communiqué	A la suite d'un défaut de vibration détecté à 19h05, une éolienne se met automatiquement à l'arrêt. Sur place le lendemain à 9 h, des techniciens du constructeur trouvent au sol l'une des 3 pales qui s'est décrochée avant de percuter le mât. L'éolienne est mise en sécurité (2 pales restantes mises en drapeau, blocage du rotor, inspection du moyeu). Un périmètre de sécurité de 30 m est établi au pied de l'éolienne et la municipalité interdit l'accès à la zone. L'accident est déclaré à l'inspection des installations classées 48 h plus tard. L'une des pales de cette éolienne avait déjà connu un problème de fixation en novembre 2011. Les fixations de cette pale au moyeu avaient été remplacées et le serrage des vis des 2 autres avait été contrôlé en avril 2012. La veille du défaut de vibration, la machine s'était arrêtée après la détection d'un échauffement du frein et d'une vitesse de rotation excessive de la génératrice. Un technicien l'avait remise en service le matin même de l'accident sans avoir constaté de défaut.	Non communiqué	ARIA
Incendie	17/03/2013	Euvy	Marne	Non communiqué	2011	Non communiqué	Des usagers de la N4 signalent vers 15h30 un feu dans la nacelle d'une éolienne. L'exploitant arrête 7 des 18 aérogénérateurs du parc. Un périmètre de sécurité de 150 m est mis en place. Le sinistre émet une importante fumée. Une des pales tombe au sol, une autre menace de tomber. Des pompiers spécialisés dans l'intervention en milieux périlleux éteignent le feu en 1 h. 450 l d'huile de boîte de vitesse s'écoulent, conduisant l'exploitant à faire réaliser une étude de pollution des sols. Le parc, mis en service en 2011, avait déjà connu un incendie quelques mois plus tôt selon la presse.	Défaillance électrique	ARIA
Déchirure de pale	20/06/2013	Labastide-sur- Besorgues	Ardèche	Non communiqué	Non communiqué	Non communiqué	Un impact de foudre endommage vers 15h30 une éolienne : une pale est déchirée sur 6 m de longueur, le boîtier basse tension et le parafoudre en tête d'installation au poste de livraison sont détruits. Des installations du réseau électrique et téléphonique sont également endommagées.	Foudre	ARIA

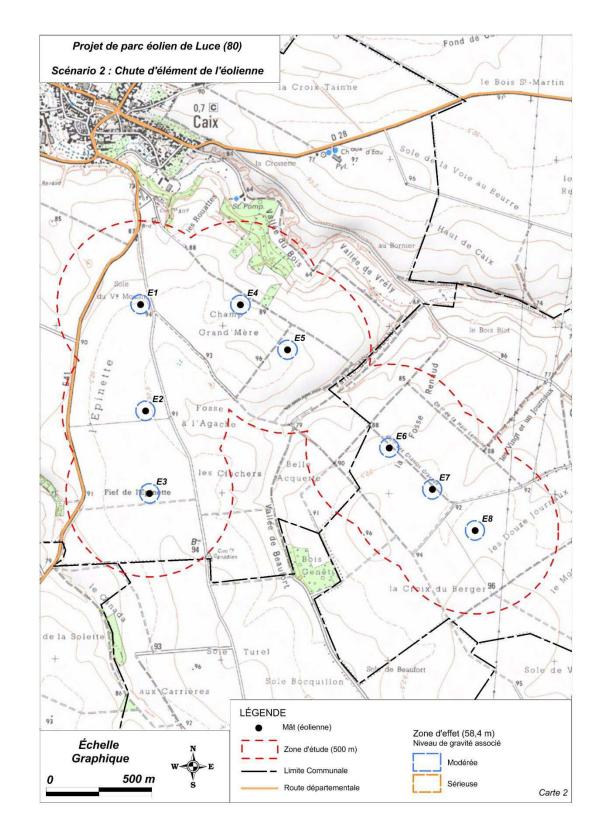
Type d'accident	Date	Nom du parc	Département	Puissance (en MW)	Année de mise en service	Technologie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information
Maintenance	01/07/2013	Cambon-et- Salvergues	Hérault	Non communiqué	Non communiqué	Non communiqué	Un opérateur est blessé par la projection d'une partie amovible de l'équipement sur lequel il intervient. L'intervention porte sur l'appoint en azote d'un accumulateur sous pression. Suite à cet accident l'exploitant modifie ses procédures de maintenance et renforce la formation des techniciens sur les aspects risques. Pour l'heure, il suspend les opérations de remplissage des accumulateurs dans les hubs d'éolienne et fait réaliser cette opération en atelier. Une modification des accumulateurs est également envisagée pour utiliser des modèles avec vanne intégrée.	Défaillances organisationnelles	ARIA
Perte d'huile	03/08/2014	Moréac	Morbihan	Non communiqué	Non communiqué	Non communiqué	Une nacelle élévatrice utilisée pour une intervention de maintenance sur une éolienne perd 270 l d'huile hydraulique. Le produit pollue le sol sur 80 m². 25 t de terres polluées sont excavées et envoyées en filière spécialisée.	Incident de maintenance	ARIA
Incendie	09/01/2014	Antheny	Ardennes	2,5	Non communiqué	Non communiqué	Incendie de la nacelle (rotor intact)	Incident électrique	ARIA
Chute de pale	20/01/2014	Sigean	Aude	Non communiqué	Non communiqué	Non communiqué	Arrêt automatique à la suite d'un défaut « vibration ». Chute d'une pale de 20 m au pied du mât	Non communiqué	ARIA

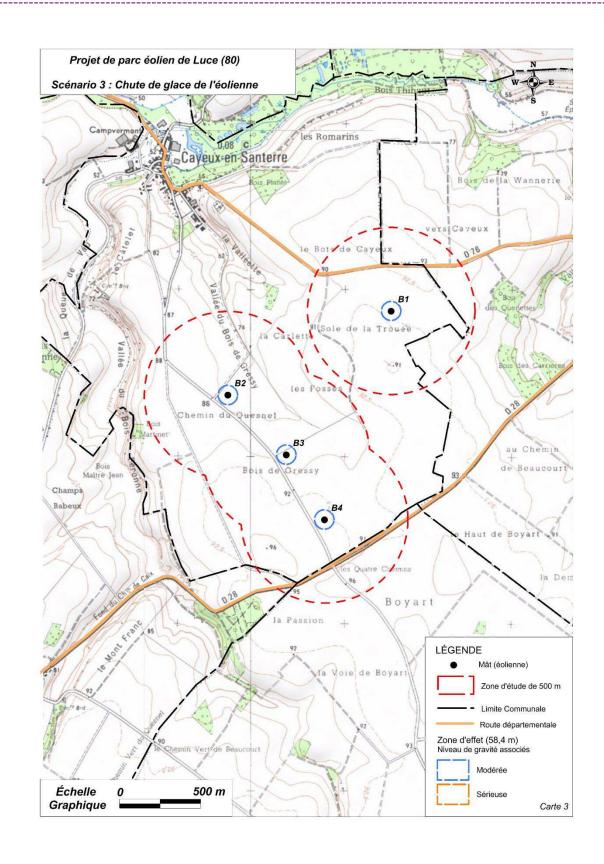


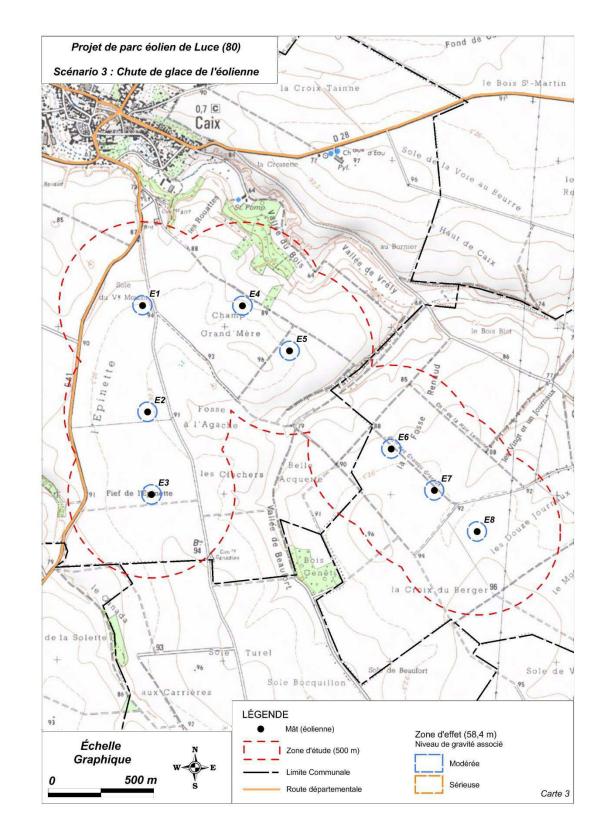

Annexe 2 Cartographies de zones d'effet des phénomènes dangereux étudiés

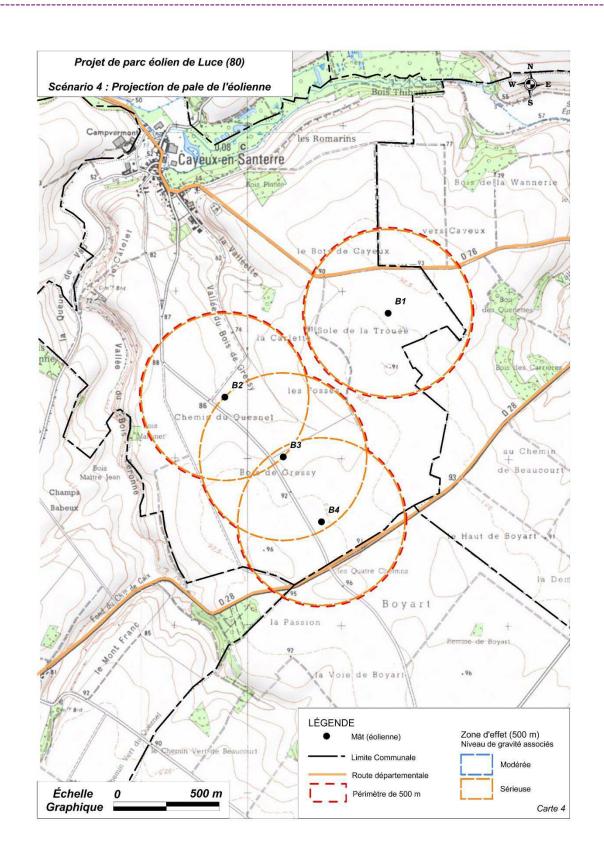
- Carte 1 Effondrement de l'éolienne
- Carte 2 Chute d'élément de l'éolienne
- Carte 3 Chute de glace
- Carte 4 Projection de pales
- Carte 5 Projection de glace

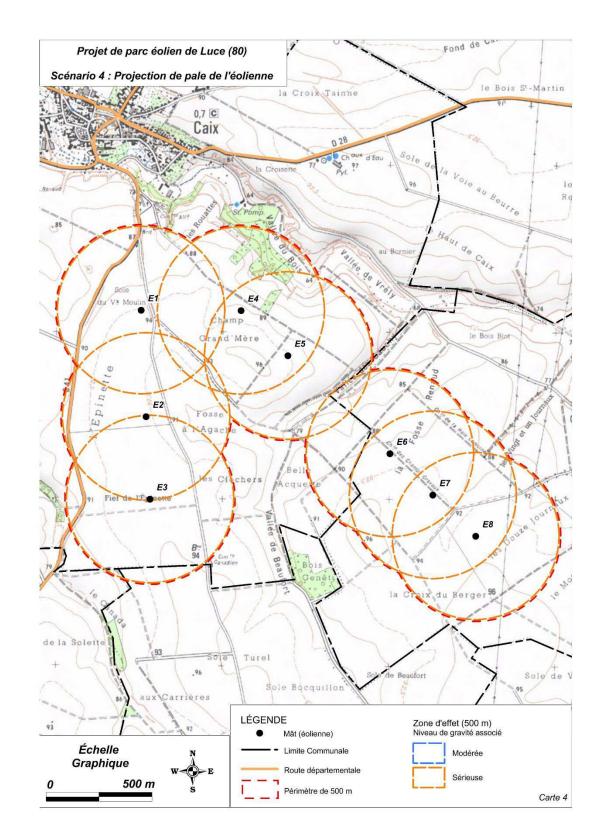


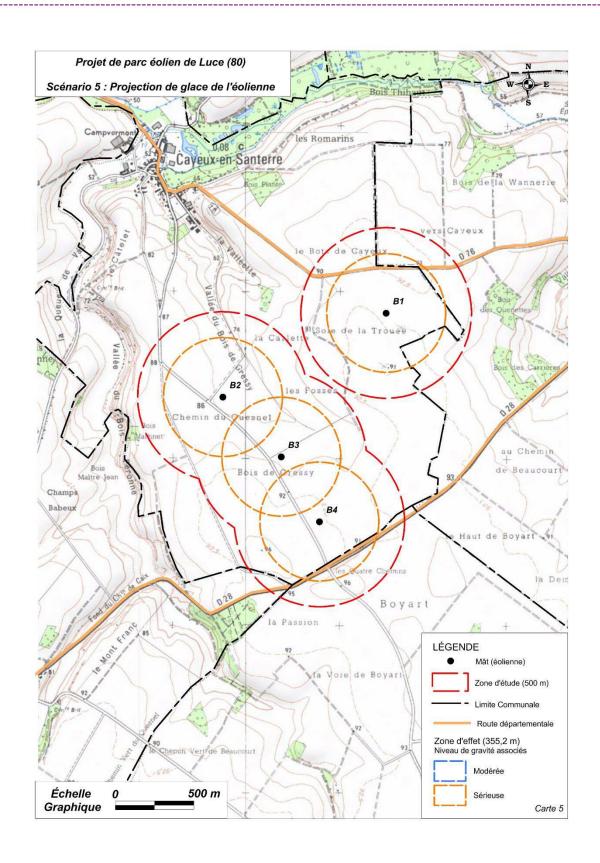


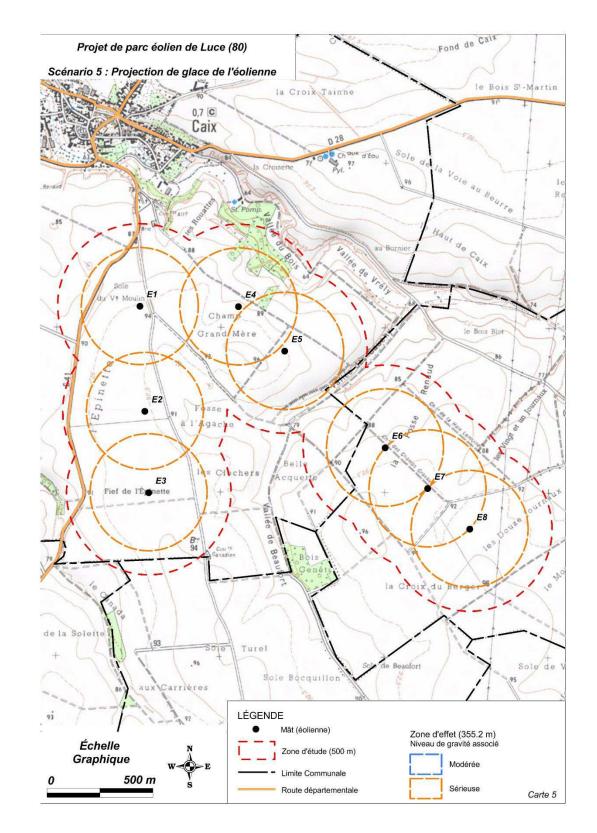


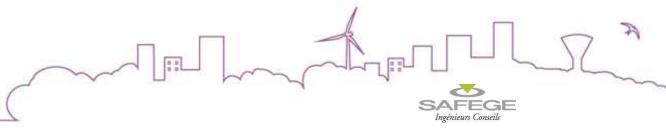


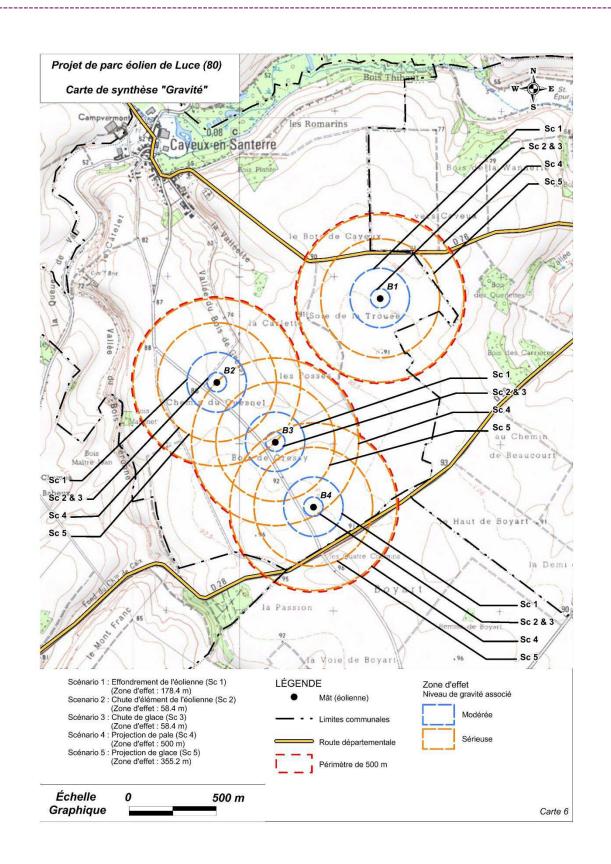


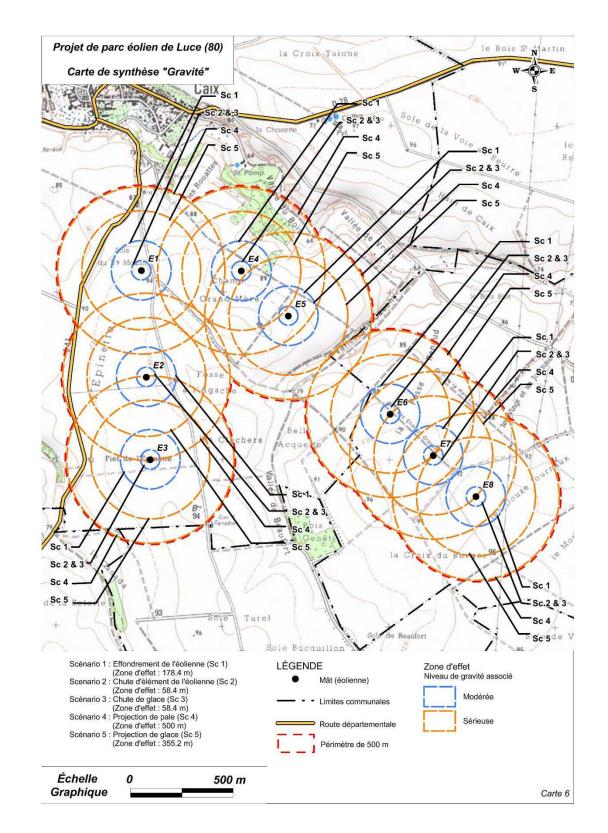











Annexe 3 Cartographies de synthèse

- Carte 6 : synthèse des risques / classe de gravité pour l'ensemble des éoliennes et des scénarios
- Carte 7 : synthèse des risques / degré d'exposition (intensité) et nombre de personnes permanentes exposées pour l'ensemble des éoliennes et des scénarios

